Living organisms have evolved, over billions of years, to develop specialized biostructures with switchable adhesion for various purposes including climbing, perching, preying, sensing, and protecting. According to adhesion mechanisms, switchable adhesives can be divided into four categories: mechanically-based adhesion, liquid-mediated adhesion, physically-actuated adhesion and chemically-enhanced adhesion. Mimicking these biostructures could create smart materials with switchable adhesion, appealing for many engineering applications in robotics, sensors, advanced drug-delivery, protein separation, etc. Progress has been made in developing bioinspired materials with switchable adhesion modulated by external stimuli such as electrical signal, magnetic field, light, temperature, pH value, etc. This review will be focused on new advance in biomimetic design and synthesis of the materials and devices with switchable adhesion. The underlying mechanisms, design principles, and future directions are discussed for the development of high-performance smart surfaces with switchable adhesion.
The development of new technologies is key to the continued improvement of medicine, relying on comprehensive materials design strategies that can integrate advanced therapeutic and diagnostic functions with a variety of surface properties such as selective adhesion, dynamic responsiveness, and optical/mechanical tunability. Liquid‐infused surfaces have recently come to the forefront as a unique approach to surface coatings that can resist adhesion of a wide range of contaminants on medical devices. Furthermore, these surfaces are proving highly versatile in enabling the integration of established medical surface treatments alongside the antifouling capabilities, such as drug release or biomolecule organization. Here, the range of research being conducted on liquid‐infused surfaces for medical applications is presented, from an understanding of the basics behind the interactions of physiological fluids, microbes, and mammalian cells with liquid layers to current applications of these materials in point‐of‐care diagnostics, medical tubing, instruments, implants, and tissue engineering. Throughout this exploration, the design parameters of liquid‐infused surfaces and how they can be adapted and tuned to particular applications are discussed, while identifying how the range of controllable factors offered by liquid‐infused surfaces can be used to enable completely new and dynamic approaches to materials and devices for human health.
more » « less- PAR ID:
- 10073572
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 30
- Issue:
- 50
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the design of ‘slippery’ nanoemulsion-infused porous surfaces (SNIPS). These materials are strongly anti-fouling to a broad range of substances, including microorganisms. Infusion with water-in-oil nanoemulsions also endows these slippery coatings with the ability to host and control or sustain the release of water-soluble agents, including polymers, peptides, and nucleic acids, opening the door to new applications of liquid-infused materials.more » « less
-
Abstract Surface wrinkles have emerged as a promising avenue for the development of smart adhesives with dynamically tunable adhesion, finding applications in diverse fields, such as soft robots and medical devices. Despite intensive studies and great achievements, it is still challenging to model and simulate the tunable adhesion with surface wrinkles due to roughened surface topologies and pre-stress inside the materials. The lack of a mechanistic understanding hinders the rational design of these smart adhesives. Here, we integrate a lattice model for nonlinear deformations of solids and nonlocal interaction potentials for adhesion in the framework of molecular dynamics to explore the roles of surface wrinkles on adhesion behaviors. We validate the proposed model by comparing wrinkles in a neo-Hookean bilayer with benchmarked results and reproducing the analytical solution for cylindrical adhesion. We then systematically study the pull-off force of the wrinkled surface with varied compressive strains and adhesion energies. Our results reveal the competing effect between the adhesion-induced contact and the roughness due to wrinkles on enhancing or weakening the adhesion. Such understanding provides guidance for tailoring material and geometry as well as loading wrinkled surfaces for different applications.
-
Abstract Preventing water droplets from transitioning to ice is advantageous for numerous applications. It is demonstrated that the use of certain phase‐change materials, which are in liquid state under ambient conditions and have melting point higher than the freezing point of water, referred herein as phase‐switching liquids (PSLs), can impede condensation–frosting lasting up to 300 and 15 times longer in bulk and surface infused state, respectively, compared to conventional surfaces under identical environmental conditions. The freezing delay is primarily a consequence of the release of trapped latent heat due to condensation, but is also affected by the solidified PSL surface morphology and its miscibility in water. Regardless of surface chemistry, PSL‐infused textured surfaces exhibit low droplet adhesion when operated below the corresponding melting point of the solidified PSLs, engendering ice and frost repellency even on hydrophilic substrates. Additionally, solidified PSL surfaces display varying degrees of optical transparency, can repel a variety of liquids, and self‐heal upon physical damage.
-
Thrombus formation in blood-contacting medical devices is a major concern in the medical device industry, limiting the clinical efficacy of these devices. Further, a locally formed clot within the device has the potential to detach from the surface, posing a risk of embolization. Clot embolization from blood-contacting cardiovascular devices can result in serious complications like acute ischemic stroke and myocardial infarction. Therefore, clot embolization associated with device-induced thrombosis can be life-threatening and requires an enhanced fundamental understanding of embolization characteristics to come up with advanced intervention strategies. Therefore, this work aims to investigate the adhesive characteristics of blood clots on common biocompatible materials used in various cardiovascular devices. This study focuses on characterizing the adhesion strength of blood clots on materials such as polytetrafluoroethylene (PTFE), polyurethane (PU), polyether ether ketone (PEEK), nitinol, and titanium, frequently used in medical devices. In addition, the effect of incubation time on clot adhesion is explored. Results from this work demonstrated strongest clot adhesion to titanium with 3 h of incubation resulting in 1.06 ± 0.20 kPa detachment stresses. The clot adhesion strength on titanium was 51.5% higher than PEEK, 35.9% higher than PTFE, 63.1% higher than PU, and 35.4% higher than nitinol. Further, adhesion strength increases with incubation time for all materials. The percentage increase in detachment stress over incubation time (ranging from 30 min to 3 h) for polymers ranged from at least 108.75% (PEEK), 140.74% (PU), to 151.61% (PTFE). Whereas, for metallic surfaces, the percentage rise ranged from 70.21% (nitinol) to 89.28% (titanium). Confocal fluorescence imaging of clot remnants on the material surfaces revealed a well-bounded platelet-fibrin network at the residual region, representing a comparatively higher adhesive region than the non-residual zone of the surface.