skip to main content


Title: Ultraparamagnetic Cells Formed through Intracellular Oxidation and Chelation of Paramagnetic Iron
Abstract

Making cells magnetic is a long‐standing goal of chemical biology, aiming to enable the separation of cells from complex biological samples and their visualization in vivo using magnetic resonance imaging (MRI). Previous efforts towards this goal, focused on engineering cells to biomineralize superparamagnetic or ferromagnetic iron oxides, have been largely unsuccessful due to the stringent required chemical conditions. Here, we introduce an alternative approach to making cells magnetic, focused on biochemically maximizing cellular paramagnetism. We show that a novel genetic construct combining the functions of ferroxidation and iron chelation enables engineered bacterial cells to accumulate iron in “ultraparamagnetic” macromolecular complexes, allowing these cells to be trapped with magnetic fields and imaged with MRI in vitro and in vivo. We characterize the properties of these cells and complexes using magnetometry, nuclear magnetic resonance, biochemical assays, and computational modeling to elucidate the unique mechanisms and capabilities of this paramagnetic concept.

 
more » « less
PAR ID:
10073627
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
38
ISSN:
1433-7851
Page Range / eLocation ID:
p. 12385-12389
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Making cells magnetic is a long‐standing goal of chemical biology, aiming to enable the separation of cells from complex biological samples and their visualization in vivo using magnetic resonance imaging (MRI). Previous efforts towards this goal, focused on engineering cells to biomineralize superparamagnetic or ferromagnetic iron oxides, have been largely unsuccessful due to the stringent required chemical conditions. Here, we introduce an alternative approach to making cells magnetic, focused on biochemically maximizing cellular paramagnetism. We show that a novel genetic construct combining the functions of ferroxidation and iron chelation enables engineered bacterial cells to accumulate iron in “ultraparamagnetic” macromolecular complexes, allowing these cells to be trapped with magnetic fields and imaged with MRI in vitro and in vivo. We characterize the properties of these cells and complexes using magnetometry, nuclear magnetic resonance, biochemical assays, and computational modeling to elucidate the unique mechanisms and capabilities of this paramagnetic concept.

     
    more » « less
  2. Abstract

    The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in vivo. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small fraction of cells express the reporter. To overcome this limitation, we developed an approach for amplifying the sensitivity of molecular MRI by combining a chemogenetic contrast mechanism with a biophysical approach to increase water diffusion through the co‐expression of a dual‐gene construct comprising an organic anion transporting polypeptide, Oatp1b3, and a water channel, Aqp1. We first show that the expression of Aqp1 amplifies MRI contrast in cultured cells engineered to express Oatp1b3. We demonstrate that the contrast amplification is caused by Aqp1‐driven increase in water exchange, which provides the gadolinium ions internalized by Oatp1b3‐expressing cells with access to a larger water pool compared with exchange‐limited conditions. We further show that our methodology allows cells to be detected using approximately 10‐fold lower concentrations of gadolinium than that in the Aqp1‐free scenario. Finally, we show that our approach enables the imaging of mixed‐cell cultures containing a low fraction of Oatp1b3‐labeled cells that are undetectable on the basis of Oatp1b3 expression alone.

     
    more » « less
  3. Abstract Purpose

    One standard method, proton resonance frequency shift, for measuring temperature using magnetic resonance imaging (MRI), in MRI‐guided surgeries, fails completely below the freezing point of water. Because of this, we have developed a new methodology for monitoring temperature with MRI below freezing. The purpose of this paper is to show that a strong temperature dependence of the nuclear relaxation timeT1in soft silicone polymers can lead to temperature‐dependent changes of MRI intensity acquired withT1weighting. We propose the use of silicone filaments inserted in tissue for measuring temperature during MRI‐guided cryoablations.

    Methods

    The temperature dependence ofT1in bio‐compatible soft silicone polymers was measured using nuclear magnetic resonance spectroscopy and MRI. Phantoms, made of bulk silicone materials and put in an MRI‐compatible thermal container with dry ice, allowed temperature measurements ranging from –60°C to + 20°C.T1‐weighted gradient echo images of the phantoms were acquired at spatially uniform temperatures and with a gradient in temperature to determine the efficacy of using these materials as temperature indicators in MRI. Ex vivo experiments on silicone rods, 4 mm in diameter, inserted in animal tissue were conducted to assess the practical feasibility of the method.

    Results

    Measurements of nuclear relaxation times of protons in soft silicone polymers show a monotonic, nearly linear, change with temperature (R2 > 0.98) and have a significant correlation with temperature (Pearson'sr > 0.99,p < 0.01). Similarly, the intensity of the MR images in these materials, taken with a gradient echo sequence, are also temperature dependent. There is again a monotonic change in MRI intensity that correlates well with the measured temperature (Pearson'sr < ‐0.98 andp < 0.01). The MRI experiments show that a temperature change of 3°C can be resolved in a distance of about 2.5 mm. Based on MRI images and external sensor calibrations for a sample with a gradient in temperature, temperature maps with 3°C isotherms are created for a bulk phantom. Experiments demonstrate that these changes in MRI intensity with temperature can also be seen in 4 mm silicone rods embedded in ex vivo animal tissue.

    Conclusions

    We have developed a new method for measuring temperature in MRI that potentially could be used during MRI‐guided cryoablation operations, reducing both procedure time and cost, and making these surgeries safer.

     
    more » « less
  4. Abstract

    Although imaging‐guided drug delivery represents a noninvasive alternative to both surgical resection and systemic methods, it has seen limited clinical use due to the potential toxicity and fast clearance of currently available imaging agents. Herein, we introduce theranostic biocompatible microcapsules as efficient contrast‐enhanced imaging agents that combine magnetic resonance imaging (MRI) with ultrasound‐triggered drug release for real‐time tracking and targeted delivery in vivo. The 3‐μm diameter capsules are assembled via layer‐by‐layer deposition of the natural polyphenol tannic acid and poly(N‐vinylpyrrolidone) with 4 nm iron oxide nanoparticles incorporated in the capsule wall. The nanoparticle‐modified capsules exhibit excellent T1and T2MRI contrast in a clinical 3T MRI scanner. Loaded with the anticancer drug doxorubicin, these capsules circulate in the blood stream for at least 48 h, which is a remarkable improvement compared to nonencapsulated nanoparticles. The application of focused ultrasound results in targeted drug release with a 16‐fold increase in doxorubicin localization in tumors compared to off‐target organs in a mouse model of breast cancer. Owing to the active contrast, long circulation, customizable size, shape, composition, and precise delivery of high payload concentrations, these materials present a powerful and safe platform for imaging‐guided precision drug delivery.

     
    more » « less
  5. Abstract

    Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non‐invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra‐fast and low‐cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1‐13C]pyruvate‐d3for injection in 6 minutes. The injected solution was sterile, non‐toxic, pH neutral and contained ≈30 mM [1‐13C]pyruvate‐d3polarized to ≈11 % (residual 250 mM methanol and 20 μM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.

     
    more » « less