skip to main content

Title: Direct‐Write Freeform Colloidal Assembly

Colloidal assembly is an attractive means to control material properties via hierarchy of particle composition, size, ordering, and macroscopic form. However, despite well‐established methods for assembling colloidal crystals as films and patterns on substrates, and within microscale confinements such as droplets or microwells, it has not been possible to build freeform colloidal crystal structures. Direct‐write colloidal assembly, a process combining the bottom‐up principle of colloidal self‐assembly with the versatility of direct‐write 3D printing, is introduced in the present study. By this method, centimeter‐scale, free‐standing colloidal structures are built from a variety of materials. A scaling law that governs the rate of assembly is derived; macroscale structural color is tailored via the size and crystalline ordering of polystyrene particles, and several freestanding structures are built from silica and gold particles. Owing to the diversity of colloidal building blocks and the means to control their interactions, direct‐write colloidal assembly could therefore enable novel composites, photonics, electronics, and other materials and devices.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Materials made by directed self‐assembly of colloids can exhibit a rich spectrum of optical phenomena, including photonic bandgaps, coherent scattering, collective plasmonic resonance, and wave guiding. The assembly of colloidal particles with spatial selectivity is critical for studying these phenomena and for practical device fabrication. While there are well‐established techniques for patterning colloidal crystals, these often require multiple steps including the fabrication of a physical template for masking, etching, stamping, or directing dewetting. Here, the direct‐writing of colloidal suspensions is presented as a technique for fabrication of iridescent colloidal crystals in arbitrary 2D patterns. Leveraging the principles of convective assembly, the process can be optimized for high writing speeds (≈600 µm s−1) at mild process temperature (30 °C) while maintaining long‐range (cm‐scale) order in the colloidal crystals. The crystals exhibit structural color by grating diffraction, and analysis of diffraction allows particle size, relative grain size, and grain orientation to be deduced. The effect of write trajectory on particle ordering is discussed and insights for developing 3D printing techniques for colloidal crystals via layer‐wise printing and sintering are provided.

    more » « less
  2. Just like atoms combine into molecules, colloids can self-organize into predetermined structures according to a set of design principles. Controlling valence—the number of interparticle bonds—is a prerequisite for the assembly of complex architectures. The assembly can be directed via solid “patchy” particles with prescribed geometries to make, for example, a colloidal diamond. We demonstrate here that the nanoscale ordering of individual molecular linkers can combine to program the structure of microscale assemblies. Specifically, we experimentally show that covering initially isotropic microdroplets withNmobile DNA linkers results in spontaneous and reversible self-organization of the DNA intoZ(N) binding patches, selecting a predictable valence. We understand this valence thermodynamically, deriving a free energy functional for droplet–droplet adhesion that accurately predicts the equilibrium size of and molecular organization within patches, as well as the observed valence transitions withN. Thus, microscopic self-organization can be programmed by choosing the molecular properties and concentration of binders. These results are widely applicable to the assembly of any particle with mobile linkers, such as functionalized liposomes or protein interactions in cell–cell adhesion.

    more » « less
  3. Abstract

    Linear defect‐disclinations are of fundamental interest in understanding complex structures explored by soft matter physics, elementary particles physics, cosmology, and various branches of mathematics. These defects are also of practical importance in materials applications, such as programmable origami, directed colloidal assembly, and command of active matter. Here an effective engineering approach is demonstrated to pattern molecular orientations at two flat confining surfaces that produce complex yet designable networks of singular disclinations of strength 1/2. Depending on the predesigned director patterns at the bounding plates, the produced disclinations are either surface‐anchored, connecting desired sites at the boundaries, or freely suspended in bulk, forming ordered arrays of polygons and wavy lines. The capability is shown to control the radius of curvature, size, and shape of disclinations by varying uniform alignment orientation on one of these confining plates. The capabilities to precisely design and create highly complex 3D disclination networks promise intriguing applications in stimuli‐responsive reconfigurable materials, directed self‐assembly of molecules, micro‐ and nanoparticles, and transport and sorting in microfluidic applications.

    more » « less
  4. Abstract

    There is great interest in exploiting van der Waals gaps in layered materials as confinement reaction vessels to template the synthesis of new nanosheet structures. The gallery spaces in multilayer graphene oxide, for example, can intercalate hydrated metal ions that assemble into metal oxide films during thermal oxidation of the sacrificial graphene template. This approach offers limited control of structure, however, and does not typically lead to 2D atomic‐scale growth of anisotropic platelet crystals, but rather arrays of simple particles directionally sintered into porous sheets. Here, a new graphene‐directed assembly route is demonstrated that yields fully dense, space‐filling films of tiled metal oxide platelet crystals with tessellated structures. The method relies on colloidal engineering to produce a printable “metallized graphene ink” with accurate control of metal loading, grain size/porosity, composition, and micro/nanomorphologies, and is capable of achieving higher metal–carbon ratio than is possible by intercalation methods. These tiled structures are sufficiently robust to create free standing papers, complex microtextured films, 3D shapes, and metal oxide replicas of natural biotextures.

    more » « less
    more » « less