Photoactivated localization microscopy (PALM) relies on fluorescence photoactivation and single-molecule localization to overcome optical diffraction and reconstruct images of biological samples with spatial resolution at the nanoscale. The implementation of this subdiffraction imaging method, however, requires fluorescent probes with photochemical and photophysical properties specifically engineered to enable the localization of single photoactivated molecules with nanometer precision. The synthetic versatility and outstanding photophysical properties of the borondipyrromethene (BODIPY) chromophore are ideally suited to satisfy these stringent requirements. Specifically, synthetic manipulations of the BODIPY scaffold can be invoked to install photolabile functional groups and photoactivate fluorescence under photochemical control. Additionally, targeting ligands can be incorporated in the resulting photoactivatable fluorophores (PAFs) to label selected subcellular components in live cells. Indeed, photoactivatable BODIPYs have already allowed the sub-diffraction imaging of diverse cellular substructures in live cells using PALM and can evolve into invaluable analytical probes for bioimaging applications.
more »
« less
A Photoactivatable BODIPY Probe for Localization‐Based Super‐Resolution Cellular Imaging
Abstract The synthesis and application of a photoactivatable boron‐alkylated BODIPY probe for localization‐based super‐resolution microscopy is reported. Photoactivation and excitation of the probe is achieved by a previously unknown boron‐photodealkylation reaction with a single low‐power visible laser and without requiring the addition of reducing agents or oxygen scavengers in the imaging buffer. These features lead to a versatile probe for localization‐based microscopy of biological systems. The probe can be easily linked to nucleophile‐containing molecules to target specific cellular organelles. By attaching paclitaxel to the photoactivatable BODIPY, in vitro and in vivo super‐resolution imaging of microtubules is demonstrated. This is the first example of single‐molecule localization‐based super‐resolution microscopy using a visible‐light‐activated BODIPY compound as a fluorescent probe.
more »
« less
- Award ID(s):
- 1709099
- PAR ID:
- 10074239
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 57
- Issue:
- 39
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 12685-12689
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Osiński, Marek; Kanaras, Antonios G. (Ed.)Single-molecule localization microscopy (SMLM) strategies based on fluorescence photoactivation permit the imaging of live cells with subdiffraction resolution and the high-throughput tracking of individual biomolecules in their interior. They rely predominantly on genetically-encoded fluorescent proteins to label live cells selectively and allow the sequential single-molecule localization of sparse populations of photoactivated fluorophores. Synthetic counterparts to these photoresponsive proteins are limited to a few remarkable examples at the present stage, mostly because of the daunting challenges in engineering biocompatible molecular constructs with appropriate photochemical and photophysical properties for live-cell SMLM. Our laboratory developed a new family of synthetic photoactivatable fluorophores specifically designed for these imaging applications. They combine a borondipyrromethene (BODIPY) fluorophore and an ortho-nitrobenzyl (ONB) photocage in a single molecular skeleton. The photoinduced ONB cleavage extends electronic delocalization to shift bathochromically the BODIPY absorption and emission bands. As a result, these photochemical transformations can be exploited to switch fluorescence on in a spectral region compatible with bioimaging applications and allow the localization of the photochemical product at the single-molecule level. Furthermore, our compounds can be delivered and operated in the interior of live cells to enable the visualization of organelles with nanometer resolution and the intracellular tracking of single photoactivated molecules.more » « less
-
Photoactivatable fluorophores have been widely used for tracking molecular and cellular dynamics with subdiffraction resolution. In this work, we have prepared a series of photoactivatable probes using the oxime moiety as a new class of photolabile caging group in which the photoactivation process is mediated by a highly efficient photodeoximation reaction. Incorporation of the oxime caging group into fluorophores results in loss of fluorescence. Upon light irradiation in the presence of air, the oxime-caged fluorophores are oxidized to their carbonyl derivatives, restoring strong fluorophore fluorescence. To demonstrate the utility of these oxime-caged fluorophores, we have created probes that target different organelles for live-cell confocal imaging. We also carried out photoactivated localization microscopy (PALM) imaging under physiological conditions using low-power light activation in the absence of cytotoxic additives. Our studies show that oximes represent a new class of visible-light photocages that can be widely used for cellular imaging, sensing, and photo-controlled molecular release.more » « less
-
Abstract Single-molecule localization microscopy (SMLM) breaks the optical diffraction limit by numerically localizing sparse fluorescence emitters to achieve super-resolution imaging. Spectroscopic SMLM or sSMLM further allows simultaneous spectroscopy and super-resolution imaging of fluorescence molecules. Hence, sSMLM can extract spectral features with single-molecule sensitivity, higher precision, and higher multiplexity than traditional multicolor microscopy modalities. These new capabilities enabled advanced multiplexed and functional cellular imaging applications. While sSMLM suffers from reduced spatial precision compared to conventional SMLM due to splitting photons to form spatial and spectral images, several methods have been reported to mitigate these weaknesses through innovative optical design and image processing techniques. This review summarizes the recent progress in sSMLM, its applications, and our perspective on future work. Graphical Abstractmore » « less
-
Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously provides spatial localization and spectral information of individual single-molecules emission, offering multicolor super-resolution imaging of multiple molecules in a single sample with the nanoscopic resolution. However, this technique is limited by the requirements of acquiring a large number of frames to reconstruct a super-resolution image. In addition, multicolor sSMLM imaging suffers from spectral cross-talk while using multiple dyes with relatively broad spectral bands that produce cross-color contamination. Here, we present a computational strategy to accelerate multicolor sSMLM imaging. Our method uses deep convolution neural networks to reconstruct high-density multicolor super-resolution images from low-density, contaminated multicolor images rendered using sSMLM datasets with much fewer frames, without compromising spatial resolution. High-quality, super-resolution images are reconstructed using up to 8-fold fewer frames than usually needed. Thus, our technique generates multicolor super-resolution images within a much shorter time, without any changes in the existing sSMLM hardware system. Two-color and three-color sSMLM experimental results demonstrate superior reconstructions of tubulin/mitochondria, peroxisome/mitochondria, and tubulin/mitochondria/peroxisome in fixed COS-7 and U2-OS cells with a significant reduction in acquisition time.more » « less
An official website of the United States government
