skip to main content


Title: Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H 2 S) Donation from γ‐Ketothiocarbamate Donor Motifs
NSF-PAR ID:
10074319
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
130
Issue:
40
ISSN:
0044-8249
Page Range / eLocation ID:
p. 13285-13289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reactions of the D1-silylidyne radical (SiD; X 2 Π) with deuterium sulfide (D 2 S; X 1 A 1 ) and hydrogen sulfide (H 2 S; X 1 A 1 ) were conducted utilizing a crossed molecular beams machine under single collision conditions. The experimental work was carried out in conjunction with electronic structure calculations. The elementary reaction commences with a barrierless addition of the D1-silylidyne radical to one of the non-bonding electron pairs of the sulfur atom of hydrogen (deuterium) sulfide followed by possible bond rotation isomerization and multiple atomic hydrogen (deuterium) migrations. Unimolecular decomposition of the reaction intermediates lead eventually to the D1-thiosilaformyl radical (DSiS) (p1) and D2-silanethione (D 2 SiS) (p3) via molecular and atomic deuterium loss channels (SiD–D 2 S system) along with the D1-thiosilaformyl radical (DSiS) (p1) and D1-silanethione (HDSiS) (p3) through molecular and atomic hydrogen ejection (SiD–H 2 S system) via indirect scattering dynamics in barrierless and overall exoergic reactions. Our study provides a look into the complex dynamics of the silicon and sulfur chemistries involving multiple deuterium/hydrogen shifts and tight exit transition states, as well as insight into silicon- and sulfur-containing molecule formation pathways in deep space. Although neither of the non-deuterated species – the thiosilaformyl radical (HSiS) and silanethione (H 2 SiS) – have been observed in the interstellar medium (ISM) thus far, astrochemical models presented here predict relative abundances in the Orion Kleinmann-Low nebula to be sufficiently high enough for detection. 
    more » « less
  2. Abstract

    The oxidation of carbonyl sulfide (OCS) is the primary, continuous source of stratospheric sulfate aerosol particles, which can scatter shortwave radiation and catalyze heterogeneous reactions in the stratosphere. While it has been estimated that the oxidation of dimethyl sulfide (DMS), emitted from the surface ocean accounts for 8%–20% of the global OCS source, there is no existing DMS oxidation mechanism relevant to the marine atmosphere that is consistent with an OCS source of this magnitude. We describe new laboratory measurements and theoretical analyses of DMS oxidation that provide a mechanistic description for OCS production from hydroperoxymethyl thioformate, a ubiquitous, soluble DMS oxidation product. We incorporate this chemical mechanism into a global chemical transport model, showing that OCS production from DMS is a factor of 3 smaller than current estimates, displays a maximum in the tropics consistent with field observations and is sensitive to multiphase cloud chemistry.

     
    more » « less
  3. Abstract

    Hydrogen sulfide (H2S) is a biologically active molecule that exhibits protective effects in a variety of physiological and pathological processes. Although several H2S‐related biological effects have been discovered by using H2S donors, knowing how much H2S has been released from donors under different conditions remains challenging. Now, a series of γ‐ketothiocarbamate (γ‐KetoTCM) compounds that provide the first examples of colorimetric H2S donors and enable direct quantification of H2S release, were reported. These compounds are activated through a pH‐dependent deprotonation/β‐elimination sequence to release carbonyl sulfide (COS), which is quickly converted into H2S by carbonic anhydrase. Thep‐nitroaniline released upon donor activation provides an optical readout that correlates directly to COS/H2S release, thus enabling colorimetric measurement of H2S donation.

     
    more » « less