Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion ( Centruroides hentzi ; Buthidae) reveal high toxin diversity in a harmless member of a lethal family
- Award ID(s):
- 1638902
- PAR ID:
- 10074439
- Date Published:
- Journal Name:
- Toxicon
- Volume:
- 142
- Issue:
- C
- ISSN:
- 0041-0101
- Page Range / eLocation ID:
- 14 to 29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Most of the snakebite envenomations in Central and South America are caused by species belonging to Bothrops genus. Their venom is composed mainly by zinc-dependent metalloproteinases, responsible of the hemorrhage characteristic of these envenomations. The aim of this study was to determine the inhibitory ability of ten flavonoids on the in-vitro proteolytic activity of Bothrops atrox venom and on the hemorrhagic, edema-forming and myonecrotic activities of Batx-I, the most abundant metalloproteinase isolated from this venom. Myricetin was the most active compound, exhibiting an IC 50 value of 150 μ M and 1021 μ M for the inhibition of proteolytic and hemorrhagic activity, respectively. Independent injection experiments, with a concentration of 1600 μ M of myricetin administered locally, immediately after toxin injection, demonstrated a reduction of 28 ± 6 % in the hemorrhagic lesion. Additionally, myricetin at concentrations 800, 1200 and 1600 μ M promoted a reduction in plasma creatine kinase activity induced by Batx-I of 21 ± 2 % , 60 ± 5 % and 63 ± 2 % , respectively. Molecular dynamics simulations coupled with the adaptive biasing method suggest that myricetin can bind to the metalloproteinase active site via formation of hydrogen bonds between the hydroxyl groups 3’, 4’ and 5’ of the benzyl moiety and amino acid Glu143 of the metalloproteinase. The hydroxyl substitution pattern of myricetin appears to be essential for its inhibitory activity. Based on this evidence, myricetin constitutes a candidate for the development of inhibitors to reduce local tissue damage in snakebite envenomations.more » « less
-
The specificity and potency of venom components give them a unique advantage in developing various pharmaceutical drugs. Though venom is a cocktail of proteins, rarely are the synergy and association between various venom components studied. Understanding the relationship between various components of venom is critical in medical research. Using meta-analysis, we observed underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I and LAAO; SVMP P-III and LAAO. In Sistrurus venom, CTL and NGF have the most associations. These associations can predict the presence of proteins in novel venom and understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit the classification of proteins as major components or minor components is highlighted. The revised classification of venom components is based on ubiquity, bioactivity, the number of associations, and synergies. The revised classification can be expected to trigger increased research on venom components, such as NGF, which have high biomedical significance. Using hierarchical clustering, we observed that the genera’s venom compositions were similar, based on functional characteristics rather than phylogenetic relationships.more » « less
An official website of the United States government

