Structural diversity is a key feature of forest ecosystems that influences ecosystem functions from local to macroscales. The ability to measure structural diversity in forests with varying ecological composition and management history can improve the understanding of linkages between forest structure and ecosystem functioning. Terrestrial LiDAR has often been used to provide a detailed characterization of structural diversity at local scales, but it is largely unknown whether these same structural features are detectable using aerial LiDAR data that are available across larger spatial scales. We used univariate and multivariate analyses to quantify cross-compatibility of structural diversity metrics from terrestrial versus aerial LiDAR in seven National Ecological Observatory Network sites across the eastern USA. We found strong univariate agreement between terrestrial and aerial LiDAR metrics of canopy height, openness, internal heterogeneity, and leaf area, but found marginal agreement between metrics that described heterogeneity of the outermost layer of the canopy. Terrestrial and aerial LiDAR both demonstrated the ability to distinguish forest sites from structural diversity metrics in multivariate space, but terrestrial LiDAR was able to resolve finer-scale detail within sites. Our findings indicated that aerial LiDAR could be of use in quantifying broad-scale variation in structural diversity across macroscales.
more »
« less
Spatial Variation in Canopy Structure across Forest Landscapes
Forest canopy structure (CS) controls many ecosystem functions and is highly variable across landscapes, but the magnitude and scale of this variation is not well understood. We used a portable canopy LiDAR system to characterize variation in five categories of CS along N = 3 transects (140–800 m long) at each of six forested landscapes within the eastern USA. The cumulative coefficient of variation was calculated for subsegments of each transect to determine the point of stability for individual CS metrics. We then quantified the scale at which CS is autocorrelated using Moran’s I in an Incremental Autocorrelation analysis. All CS metrics reached stable values within 300 m but varied substantially within and among forested landscapes. A stable point of 300 m for CS metrics corresponds with the spatial extent that many ecosystem functions are measured and modeled. Additionally, CS metrics were spatially autocorrelated at 40 to 88 m, suggesting that patch scale disturbance or environmental factors drive these patterns. Our study shows CS is heterogeneous across temperate forest landscapes at the scale of 10 s of meters, requiring a resolution of this size for upscaling CS with remote sensing to large spatial scales.
more »
« less
- Award ID(s):
- 1638702
- PAR ID:
- 10074584
- Date Published:
- Journal Name:
- Forests
- Volume:
- 9
- Issue:
- 8
- ISSN:
- 1999-4907
- Page Range / eLocation ID:
- 474
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Structurally complex forests optimize resources to assimilate carbon more effectively, leading to higher productivity. Information obtained from Light Detection and Ranging (LiDAR)‐derived canopy structural complexity (CSC) metrics across spatial scales serves as a powerful indicator of ecosystem‐scale functions such as gross primary productivity (GPP). However, our understanding of mechanistic links between forest structure and function, and the impact of disturbance on the relationship, is limited. Here, we paired eddy covariance measurements of carbon and water fluxes from nine forested sites within the 10 × 10 km CHEESEHEAD19 study domain in Northern Wisconsin, USA with drone LiDAR measurements of CSC to establish which CSC metrics were strong drivers of GPP, and tested potential mediators of the relationship. Mechanistic relationships were inspected at five resolutions (0.25, 2, 10, 25, and 50 m) to determine whether relationships persisted with scale. Vertical heterogeneity metrics were the most influential in predicting productivity for forests with a significant degree of heterogeneity in management, forest type, and species composition. CSC metrics included in the structure‐function relationship as well as driver strength was dependent on metric calculation resolution. The relationship was mediated by light use efficiency (LUE) and water use efficiency (WUE), with WUE being a stronger mediator and driver of GPP. These findings allow us to improve representation in ecosystem models of how CSC impacts light and water‐sensitive processes, and ultimately GPP. Improved models enhance our capacity to accurately simulate forest responses to management, furthering our ability to assess climate mitigation strategies.more » « less
-
Abstract AimRapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m). LocationEastern USA. Time period2017–2018. Taxa studiedTrees. MethodsWith a fusion of hyperspectral and lidar data from the NEON AOP, we assess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics. ResultsModels using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity. Main conclusionsWe found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine‐resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above.more » « less
-
This data was primarily collected to assess forest quality within the Minneapolis-St. Paul (MSP) Metropolitan Area and to link above-ground and below-ground properties as part of the goals of the MSP-LTER Urban Tree Canopy research group. Here, we sampled vegetation on 40 circular plots with a 12.5 m radius distributed across 13 parks, registering the date of sampling, park and management agency names, the plot number, and geolocation (latitude, longitude, and elevation). The plots were randomly selected based on GEDI (Global Ecosystem Dynamics Investigation instrument) 2021 footprints in the MSP Metropolitan Area along accessible forested areas inside public parks, where the management agency allowed sampling. In each plot, we measured forest structure and diversity metrics, species names and abundance, DBH, height, distance from the plot center, the height where each individual canopy starts, and the relative position, exposure, and density of each canopy. We also measured understory plant structure and diversity in 4 subplots per plot, totaling 160 subplots. In these subplots, we surveyed all individual plants with heights over 20 cm, recording species names and abundance, plant basal diameter, plant height, and the total number of branches. Furthermore, we assessed the canopy openness above each subplot by calculating percent DIFN (diffuse non-interceptance) from fish eye pictures of the canopy at 1.3 m over the subplot.more » « less
-
Abstract Plant functional diversity is strongly connected to photosynthetic carbon assimilation in terrestrial ecosystems. However, many of the plant functional traits that regulate photosynthetic capacity, including foliar nitrogen concentration and leaf mass per area, vary significantly between and within plant functional types and vertically through forest canopies, resulting in considerable landscape‐scale heterogeneity in three dimensions. Hyperspectral imagery has been used extensively to quantify functional traits across a range of ecosystems but is generally limited to providing information for top of canopy leaves only. On the other hand, lidar data can be used to retrieve the vertical structure of forest canopies. Because these data are rarely collected at the same time, there are unanswered questions about the effect of forest structure on the three ‐dimensional spatial patterns of functional traits across ecosystems. In the United States, the National Ecological Observatory Network's Airborne Observation Platform (NEON AOP) provides an opportunity to address this structure‐function relationship by collecting lidar and hyperspectral data together across a variety of ecoregions. With a fusion of hyperspectral and lidar data from the NEON AOP and field‐collected foliar trait data, we assessed the impacts of forest structure on spatial patterns of N. In addition, we examine the influence of abiotic gradients and management regimes on top‐of‐canopy percent N and total canopy N (i.e., the total amount of N [g/m2] within a forest canopy) at a NEON site consisting of a mosaic of open longleaf pine and dense broadleaf deciduous forests. Our resulting maps suggest that, in contrast to top of canopy values, total canopy N variation is dampened across this landscape resulting in relatively homogeneous spatial patterns. At the same time, we found that leaf functional diversity and canopy structural diversity showed distinct dendritic patterns related to the spatial distribution of plant functional types.more » « less