skip to main content

Title: If You Give a Kid an Oyster: Refections on Collaborations in PlaceBased STEM Education Through Oyster Restoration Science in New York City
Many urban New Yorkers believe that the Hudson River is so polluted that nothing could possibly live there. In reality, the estuary is thriving, and The River Project (TRP), a marine science field station in lower Manhattan, exists to showcase its vast biodiversity through place-based education. In 2014, TRP began collaborating on a city-wide initiative with the Billion Oyster Project and nine other partner organizations to integrate restoration science into Title I middle school curricula through the Curriculum and Community Enterprise for Restoration Science (CCERS). Teachers in the fellowship program attend science workshops and professional developments opportunities to bring the locally relevant topic of oyster restoration into their classrooms. Through this partnership, TRP has expanded its reach beyond the typical 90-minute field trip experience, fostering relationships with teachers through professional developments workshops and in-classroom lessons to support their students’ project-based learning explorations. This confluence of educational activities created a richer, more meaningful learning experience for teachers, students, and TRP educators.
Award ID(s):
Publication Date:
Journal Name:
Journal of STEM outreach
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor withNew York City Public Schools (BOP-CCERS) seeks to integrate harbor restoration activities with science teachers inorder to provide their students with experiential learning through environmental impact in New York City with thevision that public school students in New York City can benefit from environmental science and experiential learningwork through authentic research, data collection, and experimentation. The purpose is to engage science teachers withexperiential learning opportunities in the New York Harbor that helps them create engaging lessons for their ownstudents. It was found that teachersmore »responded most positively to workshops that included hands-on activities,specifically the oyster restoration station trainings, classroom oyster tank setups and activities with scientists. Teachersreported that the BOP-CCERS program prepared them to support student learning of the program content and scientificresearch activities. Students who engage in real-world science are more likely to see the relevance of science and seethemselves working toward a career pathway in STEM.« less
  2. This article provides an overview of the work pioneered by the consortium of collaborators in the Billion Oyster Curriculum and Community Enterprise for Restoration Science Project (BOP-CCERS). The BOP-CCERS are working to support computational thinking in the New York City public school classrooms by creating curriculum which combines:1. The Field Station Research (Oyster Restoration Stations) and data collection2. The Billion Oyster Project Digital Platform and data input and storage 3. The New York State Science Intermediate Level Learning Standards. 4. The Computer Science Teachers Association K-12 Computer Science StandardsThe integration of computational thinking in the STEM middle school classroom ismore »showcased through the intertwining of these dimensions into a trans-disciplinary learning experience that is rich in both content and practice. Students will be able to explain real-world phenomena found in their own community and design possible solutions through the key components of computational thinking.The Curriculum and Community Enterprise for Restoration Science Project digital platform and curriculum will be the resources that provide the underpinnings of the integration of computational thinking in the STEM middle school classroom. The primary functions of the platform include the collection and housing of the data pertaining to the harbor and its component parts, both abiotic and biotic and the storage of the curriculum for both the classroom and the field stations.« less
  3. The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor with New York City Public Schools (BOP-CCERS) program is a National Science Foundation (NSF) supported initiative and collaboration of multiple institutions and organizations led by Pace University. The NSF project, Innovative Technology Experiences for Students and Teachers (ITEST), had generated a large amount of data through engagement with teachers and students throughout New York City public schools. One purpose of this project is to engage with middle and high school science teachers to assist them in using project-based learning and real-world data collection inmore »their classrooms with their students through harbor restoration initiatives. It was found that Underrepresented Minority (URM) students reported having higher levels of interest in STEM and science than did the non-URM students. While this is a success, it was found that the URM students had lower expectations for success in STEM courses and interest in STEM careers. It was concluded that URM students may need additional support in order to build their confidence and help them to become aware of opportunities in STEM education and careers.« less
  4. Abstract The CCERS partnership includes collaborators from universities, foundations, education departments, community organizations, and cultural institutions to build a new curriculum. As reported in a study conducted by the Rand Corporation (2011), partnerships among districts, community-based organizations, government agencies, local funders, and others can strengthen learning programs. The curriculum merged project-based learning and Bybee’s 5E model (Note 1) to teach core STEM-C concepts to urban middle school students through restoration science. CCERS has five interrelated and complementary programmatic pillars (see details in the next section). The CCERS curriculum encourages urban middle school students to explore and participate in project-based learningmore »activities restoring the oyster population in and around New York Harbor. In Melaville, Berg and Blank’s Community Based Learning (2001) there is a statement that says, “Education must connect subject matter with the places where students live and the issues that affect us all”. Lessons engage students and teachers in long-term restoration ecology and environmental monitoring projects with STEM professionals and citizen scientists. In brief, partners have created curriculums for both in-school and out-of-school learning programs, an online platform for educators and students to collaborate, and exhibits with community partners to reinforce and extend both the educators’ and their students’ learning. Currently CCERS implementation involves: • 78 middle schools • 127 teachers • 110 scientist volunteers • Over 5000 K-12 students In this report, we present summative findings from data collected via surveys among three cohorts of students whose teachers were trained by the project’s curriculum and findings from interviews among project leaders to answer the following research questions: 1. Do the five programmatic pillars function independently and collectively as a system of interrelated STEM-C content delivery vehicles that also effectively change students’ and educators’ disposition towards STEM-C learning and environmental restoration and stewardship? 2. What comprises the "curriculum plus community enterprise" local model? 3. What are the mechanisms for creating sustainability and scalability of the model locally during and beyond its five-year implementation? 4. What core aspects of the model are replicable? Findings suggest the program improved students’ knowledge in life sciences but did not have a significant effect on students’ intent to become a scientist or affinity for science. Published by Sciedu Press 1 ISSN 2380-9183 E-ISSN 2380-9205 International Research in Higher Education Vol. 3, No. 4; 2018 Interviews with project staff indicated that the key factors in the model were its conservation mission, partnerships, and the local nature of the issues involved. The primary mechanisms for sustainability and scalability beyond the five-year implementation were the digital platform, the curriculum itself, and the dissemination (with over 450 articles related to the project published in the media and academic journals). The core replicable aspects identified were the digital platform and adoption in other Keystone species contexts.« less
  5. This qualitative study chronicles one of the fundamental pillars of the Curriculum and Community Enterprise for Restoration Science (CCERS). The professional development is focused on curricula that are grounded in the community-based environmental restoration of the waterways of New York Harbor. Centered on the restoration of the native oyster population, hundreds of New York City public school teachers take part in this experience with the intent of increasing their own place-based pedagogical content knowledge and skills. Most of the participants teach in school with populations that are underrepresented in post-secondary STEM majors and STEM related careers. Professional learning activities formore »teachers and community scientists were offered throughout the 2021 calendar year. Professional Learning Activity Surveys were administered and teachers responded to questions about how they participated in CCERS events, the ways in which CCERS participation has impacted their teaching practice, whether they use CCERS activities for student research, and ways CCERS participation impacts student STEM career interest. An intended outcome is to instill a STEM identity in students identifying as URM and to bring STEM career awareness to these students. More than 72% of the teachers in the professional development sessions agreed that the professional learning activities were effective in providing new STEM content knowledge and best practices for teaching. The majority also reported that the sessions enabled them to increase their students’ engagement with STEM and interest in STEM careers.« less