A vibrational study of phase transitions in Fe 2 P 2 O 7 and Cr 2 P 2 O 7 under high-pressures
More Like this
-
We report on spectroscopic measurements on the
transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the state were found to be , and , , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. -
Abstract This work examines the pinning enhancement in BaZrO 3 (BZO) +Y 2 O 3 doubly-doped (DD) YBa 2 Cu 3 O 7 (YBCO) nanocomposite multilayer (DD-ML) films. The film consists of two 10 nm thin Ca 0.3 Y 0.7 Ba 2 Cu 3 O 7-x (CaY-123) spacers stacking alternatively with three BZO + Y 2 O 3 /YBCO layers of 50 nm each in thickness that contain 3 vol% of Y 2 O 3 and BZO doping in the range of 2–6 vol%. Enhanced magnetic vortex pinning and improved pinning isotropy with respect to the orientation of magnetic field (B) have been achieved in the DD-ML samples at lower BZO doping as compared to that in the single-layer counterparts (DD-SL) without the CaY-123 spacers. For example, the pinning force density ( F p ) of ∼58 GNm −3 in 2 vol.% of DD-ML film is ∼110% higher than in 2 vol% of DD-SL at 65 K and B // c -axis, which is attributed to the improved pinning efficiency by c -axis aligned BZO nanorods through diffusion of Calcium (Ca) along the tensile-strained channels at BZO nanorods/YBCO interface for improvement of the interface microstructure and hence pinning efficiency ofmore »