skip to main content


Title: The terpenoid backbone biosynthesis pathway directly affects the biosynthesis of alarm pheromone in the aphid: Genes related to EβF biosynthesis
NSF-PAR ID:
10075072
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Insect Molecular Biology
ISSN:
0962-1075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Endosidin20 (ES20) is a recently identified cellulose biosynthesis inhibitor (CBI) that targets the catalytic site of plant cellulose synthase (CESA). Here, we screened over 600 ES20 analogs and identified nine active analogs named ES20‐1 to ES20‐9. Among these, endosidin20‐1 (ES20‐1) had stronger inhibitory effects on plant growth and cellulose biosynthesis than ES20. At the biochemical level, we demonstrated that ES20‐1, like ES20, directly interacts with CESA6. At the cellular level, this molecule, like ES20, induced the accumulation of cellulose synthase complexes at the Golgi apparatus and inhibited their secretion to the plasma membrane. Like ES20, ES20‐1 likely targets the catalytic site of CESA. However, through molecular docking analysis using a modeled structure of full‐length CESA6, we found that both ES20 and ES20‐1 might have another target site at the transmembrane regions of CESA6. Besides ES20, other CBIs such as isoxaben, C17, and flupoxam are widely used tools to dissect the mechanism of cellulose biosynthesis and are also valuable resources for the development of herbicides. Here, based on mutant genetic analysis and molecular docking analysis, we have identified the potential target sites of these CBIs on a modeled CESA structure. Some bacteria also produce cellulose, and both ES20 and ES20‐1 inhibited bacterial cellulose biosynthesis. Therefore, we conclude that ES20‐1 is a more potent analog of ES20 that inhibits intrinsic cellulose biosynthesis in plants, and both ES20 and ES20‐1 show an inhibitory effect on bacterial growth and cellulose synthesis, making them excellent tools for exploring the mechanisms of cellulose biosynthesis across kingdoms.

     
    more » « less
  2. Ravel, Jacques (Ed.)
    ABSTRACT Invertebrates, particularly sponges, have been a dominant source of new marine natural products. For example, lasonolide A (LSA) is a potential anticancer molecule isolated from the marine sponge Forcepia sp., with nanomolar growth inhibitory activity and a unique cytotoxicity profile against the National Cancer Institute 60-cell-line screen. Here, we identified the putative biosynthetic pathway for LSA. Genomic binning of the Forcepia sponge metagenome revealed a Gram-negative bacterium belonging to the phylum Verrucomicrobia as the candidate producer of LSA. Phylogenetic analysis showed that this bacterium, here named “ Candidatus Thermopylae lasonolidus,” only has 88.78% 16S rRNA identity with the closest relative, Pedosphaera parvula Ellin514, indicating that it represents a new genus. The lasonolide A ( las ) biosynthetic gene cluster (BGC) was identified as a trans -acyltransferase (AT) polyketide synthase (PKS) pathway. Compared with its host genome, the las BGC exhibits a significantly different GC content and pentanucleotide frequency, suggesting a potential horizontal acquisition of the gene cluster. Furthermore, three copies of the putative las pathway were identified in the candidate producer genome. Differences between the three las repeats were observed, including the presence of three insertions, two single-nucleotide polymorphisms, and the absence of a stand-alone acyl carrier protein in one of the repeats. Even though the verrucomicrobial producer shows signs of genome reduction, its genome size is still fairly large (about 5 Mbp), and, compared to its closest free-living relative, it contains most of the primary metabolic pathways, suggesting that it is in the early stages of reduction. IMPORTANCE While sponges are valuable sources of bioactive natural products, a majority of these compounds are produced in small quantities by uncultured symbionts, hampering the study and clinical development of these unique compounds. Lasonolide A (LSA), isolated from marine sponge Forcepia sp., is a cytotoxic molecule active at nanomolar concentrations, which causes premature chromosome condensation, blebbing, cell contraction, and loss of cell adhesion, indicating a novel mechanism of action and making it a potential anticancer drug lead. However, its limited supply hampers progression to clinical trials. We investigated the microbiome of Forcepia sp. using culture-independent DNA sequencing, identified genes likely responsible for LSA synthesis in an uncultured bacterium, and assembled the symbiont’s genome. These insights provide future opportunities for heterologous expression and cultivation efforts that may minimize LSA’s supply problem. 
    more » « less