Optical microscopy suffers from multiple scattering (MS), which limits the optical imaging depth into scattering media. We previously demonstrated aberration-diverse optical coherence tomography (AD-OCT) for MS suppression, based on the principle that for datasets acquired with different aberration states of the imaging beam, MS backgrounds become decorrelated while single scattering (SS) signals remain correlated, so that a simple coherent average can be used to enhance the SS signal over the MS background. Here, we propose a space/spatial-frequency domain analysis framework for the investigation of MS in OCT, and apply the framework to compare AD-OCT (using astigmatic beams) to standard Gaussian-beam OCT via experiments in scattering tissue phantoms. Utilizing this framework, we found that increasing the astigmatic magnitude produced a large drop in both MS background and SS signal, but the decay experienced by the MS background was larger than the SS signal. Accounting for the decay in both SS signal and MS background, the overall signal-to-background ratio (SBR) of AD-OCT was similar to the Gaussian control after about 10 coherent averages, when deeper line foci was positioned at the plane-of-interest and the line foci spacing was smaller than or equal to 80 µm. For an even larger line foci spacing of 160 µm, AD-OCT resulted in a lower SBR than the Gaussian-beam control. This work provides an analysis framework to gain deeper levels of understanding and insights for the future study of MS and MS suppression in both the space and spatial-frequency domains. 
                        more » 
                        « less   
                    
                            
                            Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle
                        
                    
    
            Multiple scattering is a major barrier that limits the optical imaging depth in scattering media. In order to alleviate this effect, we demonstrate aberration-diverse optical coherence tomography (AD-OCT), which exploits the phase correlation between the deterministic signals from single-scattered photons to suppress the random background caused by multiple scattering and speckle. AD-OCT illuminates the sample volume with diverse aberrated point spread functions, and computationally removes these intentionally applied aberrations. After accumulating 12 astigmatism-diverse OCT volumes, we show a 10 dB enhancement in signal-to-background ratio via a coherent average of reconstructed signals from a USAF target located 7.2 scattering mean free paths below a thick scattering layer, and a 3× speckle contrast reduction from an incoherent average of reconstructed signals inside the scattering layer. This AD-OCT method, when implemented using astigmatic illumination, is a promising approach for ultra-deep volumetric optical coherence microscopy. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1752405
- PAR ID:
- 10075688
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Biomedical Optics Express
- Volume:
- 9
- Issue:
- 10
- ISSN:
- 2156-7085
- Format(s):
- Medium: X Size: Article No. 4919
- Size(s):
- Article No. 4919
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Optical coherence tomography (OCT) has seen widespread success as anin vivoclinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT that synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free computational 3D microscope features a novel optical design incorporating a parabolic mirror to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over up to without moving the sample. We demonstrate that 3D OCRT reveals 3D features unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples.more » « less
- 
            Abstract Optical coherence tomography (OCT) is an optical technique which allows for volumetric visualization of the internal structures of translucent materials. Additional information can be gained by measuring the rate of signal attenuation in depth. Techniques have been developed to estimate the rate of attenuation on a voxel by voxel basis. This depth resolved attenuation analysis gives insight into tissue structure and organization in a spatially resolved way. However, the presence of speckle in the OCT measurement causes the attenuation coefficient image to contain unrealistic fluctuations and makes the reliability of these images at the voxel level poor. While the distribution of speckle in OCT images has appeared in literature, the resulting voxelwise corruption of the attenuation analysis has not. In this work, the estimated depth resolved attenuation coefficient from OCT data with speckle is shown to be approximately exponentially distributed. After this, a prior distribution for the depth resolved attenuation coefficient is derived for a simple system using statistical mechanics. Finally, given a set of depth resolved estimates which were made from OCT data in the presence of speckle, a posterior probability distribution for the true voxelwise attenuation coefficient is derived and a Bayesian voxelwise estimator for the coefficient is given. These results are demonstrated in simulation and validated experimentally.more » « less
- 
            For many clinical applications, such as dermatology, optical coherence tomography (OCT) suffers from limited penetration depth due primarily to the highly scattering nature of biological tissues. Here, we present a novel implementation of dual-axis optical coherence tomography (DA-OCT) that offers improved depth penetration in skin imaging at 1.3 µm compared to conventional OCT. Several unique aspects of DA-OCT are examined here, including the requirements for scattering properties to realize the improvement and the limited depth of focus (DOF) inherent to the technique. To overcome this limitation, our approach uses a tunable lens to coordinate focal plane selection with image acquisition to create an enhanced DOF for DA-OCT. This improvement in penetration depth is quantified experimentally against conventional on-axis OCT using tissue phantoms and mouse skin. The results presented here suggest the potential use of DA-OCT in situations where a high degree of scattering limits depth penetration in OCT imaging.more » « less
- 
            We present a general theory of optical coherence tomography (OCT), which synthesizes the fundamental concepts and implementations of OCT under a common 3D -space framework. At the heart of this analysis is the Fourier diffraction theorem, which relates the coherent interaction between a sample and plane wave to the Ewald sphere in the 3D -space representation of the sample. While only the axial dimension of OCT is typically analyzed in -space, we show that embracing a fully 3D -space formalism allows explanation of nearly every fundamental physical phenomenon or property of OCT, including contrast mechanism, resolution, dispersion, aberration, limited depth of focus, and speckle. The theory also unifies diffraction tomography, confocal microscopy, point-scanning OCT, line-field OCT, full-field OCT, Bessel beam OCT, transillumination OCT, interferometric synthetic aperture microscopy (ISAM), and optical coherence refraction tomography (OCRT), among others. Our unified theory not only enables clear understanding of existing techniques but also suggests new research directions to continue advancing the field of OCT.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
