The scalability and efficiency of numerical methods on parallel computer architectures is of prime importance as we march towards exascale computing. Classical methods like finite difference schemes and finite volume methods have inherent roadblocks in their mathematical construction to achieve good scalability. These methods are popularly used to solve the Navier-Stokes equations for fluid flow simulations. The discontinuous Galerkin family of methods for solving continuum partial differential equations has shown promise in realizing parallel efficiency and scalability when approaching petascale computations. In this paper an explicit modal discontinuous Galerkin (DG) method utilizing Implicit Large Eddy Simulation (ILES) is proposed for unsteady turbulent flow simulations involving the three-dimensional Navier-Stokes equations. A study of the method was performed for the Taylor-Green vortex case at a Reynolds number ranging from 100 to 1600. The polynomial order
Optimal estimates on stabilized finite volume methods for the three dimensional Navier–Stokes model are investigated and developed in this paper. Based on the global existence theorem [23], we first prove the global bound for the velocity in the
- PAR ID:
- 10075717
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Numerical Methods for Partial Differential Equations
- Volume:
- 35
- Issue:
- 1
- ISSN:
- 0749-159X
- Page Range / eLocation ID:
- p. 128-154
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract P = 2 (third order accurate) was found to closely match the Direct Navier-Stokes (DNS) results for all Reynolds numbers tested outside of Re = 1600, which had a normalized RMS error of 3.43 × 10−4in the dissipation rate for a 603element mesh. The scalability and performance study of the method was then conducted for a Reynolds number of 1600 for polynomials orders fromP = 2 toP = 6. The highest order polynomial that was tested (P = 6) was found to have the most efficient scalability using both the MPI and OpenMP implementations. -
Abstract We study the singularity formation of a quasi-exact 1D model proposed by Hou and Li (2008
Commun. Pure Appl. Math. 61 661–97). This model is based on an approximation of the axisymmetric Navier–Stokes equations in ther direction. The solution of the 1D model can be used to construct an exact solution of the original 3D Euler and Navier–Stokes equations if the initial angular velocity, angular vorticity, and angular stream function are linear inr . This model shares many intrinsic properties similar to those of the 3D Euler and Navier–Stokes equations. It captures the competition between advection and vortex stretching as in the 1D De Gregorio (De Gregorio 1990J. Stat. Phys. 59 1251–63; De Gregorio 1996Math. Methods Appl. Sci. 19 1233–55) model. We show that the inviscid model with weakened advection and smooth initial data or the original 1D model with Hölder continuous data develops a self-similar blowup. We also show that the viscous model with weakened advection and smooth initial data develops a finite time blowup. To obtain sharp estimates for the nonlocal terms, we perform an exact computation for the low-frequency Fourier modes and extract damping in leading order estimates for the high-frequency modes using singularly weighted norms in the energy estimates. The analysis for the viscous case is more subtle since the viscous terms produce some instability if we just use singular weights. We establish the blowup analysis for the viscous model by carefully designing an energy norm that combines a singularly weighted energy norm and a sum of high-order Sobolev norms. -
Lei and Lin [Comm. Pure Appl. Math. 64 (2011), pp. 1297–1304] have recently given a proof of a global mild solution of the three-dimensional Navier-Stokes equations in function spaces based on the Wiener algebra. An alternative proof of existence of these solutions was then developed by Bae [Proc. Amer. Math. Soc. 143 (2015), pp. 2887–2892], and this new proof allowed for an estimate of the radius of analyticity of the solutions at positive times. We adapt the Bae proof to prove existence of the Lei-Lin solution in the spatially periodic setting, finding an improved bound for the radius of analyticity in this case.
-
Summary A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least‐squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two‐dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier–Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier–Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd.
-
We consider a model equation for the Navier–Stokes strain equation which has the same identity for enstrophy growth and a number of the same regularity criteria as the full Navier–Stokes strain equation, and is also an evolution equation on the same constraint space. We prove finite-time blowup for this model equation, which shows that the identity for enstrophy growth and the strain constraint space are not sufficient on their own to guarantee global regularity for Navier–Stokes. The mechanism for the finite-time blowup of this model equation is the self-amplification of strain, which is consistent with recent research suggesting that strain self-amplification, not vortex stretching, is the main mechanism behind the turbulent energy cascade. Because the strain self-amplification model equation is obtained by dropping certain terms from the full Navier–Stokes strain equation, we will also prove a conditional blowup result for the full Navier–Stokes equation involving a perturbative condition on the terms neglected in the model equation.more » « less