MXene and graphene cryogels have demonstrated excellent electromagnetic interference (EMI) shielding effectiveness due to their exceptional electrical conductivity, low density, and ability to dissipate electromagnetic waves through numerous internal interfaces. However, their synthesis demands costly reduction techniques and/or pre‐processing methods such as freeze‐casting to achieve high EMI shielding and mechanical performance. Furthermore, limited research has been conducted on optimizing the cryogel microstructures and porosity to enhance EMI shielding effectiveness while reducing materials consumption. Herein, a novel approach to produce ultra‐lightweight cryogels composed of Ti3C2T
Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness are highly desirable for next‐generation portable and wearable electronic devices. Here, spin spray layer‐by‐layer (SSLbL) to rapidly assemble Ti3C2T
- NSF-PAR ID:
- 10075727
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 28
- Issue:
- 44
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x /graphene oxide (GO) displaying multiscale porosity is presented to enable high‐performance EMI shielding. This method uses controllable templating through the interfacial assembly of filamentous‐structured liquids that are readily converted into EMI cryogels. The obtained ultra‐flyweight cryogels (3–7 mg cm−3) exhibit outstanding specific EMI shielding effectiveness (33 000–50 000 dB cm2 g−1) while eliminating the need for chemical or thermal reduction. Furthermore, exceptional shielding is achieved when the Ti3C2Tx /GO cryogels are used as the backbone of conductive epoxy nanocomposites, yielding EMI shielding effectiveness of 31.7–51.4 dB at a low filler loading (0.3–0.7 wt%). Overall, a one‐of‐a‐kind EMI shielding system is introduced that is readily processed while affording scalability and performance. -
MXenes, a new class of 2D transition metal carbides and carbonitrides, show great promise in supercapacitors, Li‐ion batteries, fuel cells, and sensor applications. A unique combination of their metallic conductivity, hydrophilic surface, and excellent mechanical properties renders them attractive for transparent conductive electrode application. Here, a simple, scalable method is proposed to fabricate transparent conductive thin films using delaminated Ti3C2MXene flakes by spray coating. Homogenous films, 5–70 nm thick, are produced at ambient conditions over a large area as shown by scanning electron microscopy and atomic force microscopy. The sheet resistances (
Rs ) range from 0.5 to 8 kΩ sq−1at 40% to 90% transmittance, respectively, which corresponds to figures of merit (the ratio of electronic to optical conductivities,σ DC/σ opt) around 0.5–0.7. Flexible, transparent, and conductive films are also produced and exhibit stableRs values at up to 5 mm bend radii. Furthermore, the films' optoelectronic properties are tuned by chemical or electrochemical intercalation of cations. The films show reversible changes of transmittance in the UV–visible region during electrochemical intercalation/deintercalation of tetramethylammonium hydroxide. This work shows the potential of MXenes to be used as transparent conductors in electronic, electrochromic, and sensor applications. -
Abstract MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2T
x ) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF ), which impede practical applications Ti3C2Tx electrodes in solution‐processed optoelectronics. Herein, Ti3C2Tx MXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, highWF of 5.84 eV, and low sheet resistanceR Sof 97.4 Ω sq−1. The compact Ti3C2Tx structure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates theWF . Thus, changes in theWF andR Sare negligible even after 22 days of exposure to ambient air. The Ti3C2Tx MXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and lowWF of MXene electrodes for solution‐processable optoelectronics. -
Abstract Safety issues remain a major obstacle toward large‐scale applications of high‐energy lithium‐ion batteries. Embedding thermo‐responsive polymer switching materials (TRPS) into batteries is a potential strategy to prevent thermal runaway, which is a major cause of battery failures. Here, thin, flexible, highly responsive polymer nanocomposites enabled by bio‐inspired nanospiky metal (Ni) particles are reported. These unique Ni particles are synthesized by a simple aqueous reaction at gram‐scale with controlled surface morphology and composition to optimize electrical properties of the nanocomposites. The Ni particles provide TRPS films with a high room‐temperature conductivity of up to 300 S cm−1. Such TRPS composite films also have a high rate (<1 s) of resistance switching within a narrow temperature range, good reversibility upon on/off switching, and a tunable switching temperature (
T s; 75 to 170 °C) that can be achieved by tailing their compositions. The small size (≈500 nm) of Ni particles enables ready fabrication of thin and flexible TPRS films with thickness approaching 5 µm or less. These features suggest the great potential of using this new type of responsive polymer composite for more effective battery thermal regulation without sacrificing cell performance. -
Abstract Polymer composite films containing fillers comprising quasi‐1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to
≈ 106. The polymer composites with low loadings of quasi‐1D TaSe3fillers (< 3 vol%) reveal excellent electromagnetic interference shielding in the X‐band GHz and extremely high frequency sub‐THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high‐aspect‐ratio electrically conductive TaSe3atomic‐thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high‐frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating.