skip to main content


Title: Stereolithography for Personalized Left Atrial Appendage Occluders
Abstract

Advancements in 3D additive manufacturing have spurred the development of effective patient‐specific medical devices. Prior applications are limited to hard materials, however, with few implementations of soft devices that better match the properties of natural tissue. This paper introduces a rapid, low cost, and scalable process for fabricating soft, personalized medical implants via stereolithography of elastomeric polyurethane resin. The effectiveness of this approach is demonstrated by designing and manufacturing patient‐specific endocardial implants. These devices occlude the left atrial appendage, a complex structure within the heart prone to blood clot formation in patients with atrial fibrillation. Existing occluders permit residual blood flow and can damage neighboring tissues. Here, the robust mechanical properties of the hollow, printed geometries are characterized and stable device anchoring through in vitro benchtop testing is confirmed. The soft, patient‐specific devices outperform non‐patient‐specific devices in embolism and occlusion experiments, as well as in computational fluid dynamics simulations.

 
more » « less
NSF-PAR ID:
10075738
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
3
Issue:
12
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Additive manufacturing (AM) of medical devices such as orthopedic implants and hearing aids is highly attractive because of the potential of AM to match the complex form and mechanics of individual human bodies. Externally worn and implantable tissue‐support devices, such as ankle or knee braces, and hernia repair mesh, offer a new opportunity for AM to mimic tissue‐like mechanics and improve both patient outcomes and comfort. Here, it is demonstrated how explicit programming of the toolpath in an extrusion AM process can enable new, flexible mesh materials having digitally tailored mechanical properties and geometry. Meshes are fabricated by extrusion of thermoplastics, optionally with continuous fiber reinforcement, using a continuous toolpath that tailors the elasticity of unit cells of the mesh via incorporation of slack and modulation of filament–filament bonding. It is shown how the tensile mesh mechanics can be engineered to match the nonlinear response of muscle. An ankle brace with directionally specific inversion stiffness arising from embedded mesh is validated, and further concepts for 3D mesh devices are prototyped.

     
    more » « less
  2. Virtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices. In the past decade, the hemocompatibility of super-repellent surfaces ( i.e. , surfaces that are extremely repellent to liquids) has been extensively investigated because such surfaces greatly reduce the blood–material contact area, which in turn reduces the area available for protein adsorption and blood cell or platelet adhesion, thereby offering the potential for improved hemocompatibility. In this review, we critically examine the progress made in characterizing the hemocompatibility of super-repellent surfaces, identify the unresolved challenges and highlight the opportunities for future research on developing medical implants and devices with super-repellent surfaces. 
    more » « less
  3. Pediatric heart valve disease affects children worldwide and necessitates valve replacements that remodel and grow with the patient. Current valve manufacturing technologies struggle to create valves that facilitate native tissue remodeling for permanent replacements. Here, we present focused rotary jet spinning (FRJS) for implantable medical devices, such as heart valves, to address this challenge. Combining RJS and a focused air stream, FRJS prints FibraValves, micro- and nanofibrous heart valves, in minutes. The micro- and nanoscale features provide structural cues to orient cells at the biotic-abiotic interface, while the centimeter-scale valve shape regulates cardiac flow. We built valves using poly(L-lactide-co-Ɛ-caprolactone) fiber scaffolds, which supported rapid cellular infiltration and displayed native valve-like mechanical properties. Evaluating clinical translatability, we assessed acute performance in a large animal model using a transcatheter delivery approach. These tests indicate that FRJS is a viable method for manufacturing heart valves and future medical implants. 
    more » « less
  4. Abstract

    Noncommunicable diseases (NCD), such as obesity, diabetes, and cardiovascular disease, are defining healthcare challenges of the 21st century. Medical infrastructure, which for decades sought to reduce the incidence and severity of communicable diseases, has proven insufficient in meeting the intensive, long‐term monitoring needs of many NCD disease patient groups. In addition, existing portable devices with rigid electronics are still limited in clinical use due to unreliable data, limited functionality, and lack of continuous measurement ability. Here, a wearable system for at‐home cardiovascular monitoring of postpartum women—a group with urgently unmet NCD needs in the United States—using a cloud‐integrated soft sternal device with conformal nanomembrane sensors is introduced. A supporting mobile application provides device data to a custom cloud architecture for real‐time waveform analytics, including medical device‐grade blood pressure prediction via deep learning, and shares the results with both patient and clinician to complete a robust and highly scalable remote monitoring ecosystem. Validated in a month‐long clinical study with 20 postpartum Black women, the system demonstrates its ability to remotely monitor existing disease progression, stratify patient risk, and augment clinical decision‐making by informing interventions for groups whose healthcare needs otherwise remain unmet in standard clinical practice.

     
    more » « less
  5. Abstract

    The ability of living species to transition between rigid and flexible shapes represents one of their survival mechanisms, which has been adopted by various human technologies. Such transition is especially desired in medical devices as rigidity facilitates the implantation process, while flexibility and softness favor biocompatibility with surrounding tissue. Traditional thermoplastics cannot match soft tissue mechanics, while gels leach into the body and alter their properties over time. Here, a single‐component system with an unprecedented drop of Young's modulus by up to six orders of magnitude from the GPa to kPa level at a controlled temperature within 28–43 °C is demonstrated. This approach is based on brush‐like polymer networks with crystallizable side chains, e.g., poly(valerolactone), affording independent control of melting temperature and Young's modulus by concurrently altering side chain length and crosslink density. Softening down to the tissue level at the physiological temperature allows the design of tissue‐adaptive implants that can be inserted as rigid devices followed by matching the surrounding tissue mechanics at body temperature. This transition also enables thermally triggered release of embedded drugs for anti‐inflammatory treatment.

     
    more » « less