skip to main content


Title: Enhanced Charge Transport in Hybrid Perovskite Field‐Effect Transistors via Microstructure Control
Abstract

Hybrid organic–inorganic perovskites have recently gained immense attention due to their unique optical and electronic properties and low production cost, which make them promising candidates for a wide range of optoelectronic devices. But unlike most other technologies, the breakthroughs witnessed in hybrid perovskite optoelectronics have outgrown the basic understanding of the fundamental material properties. For example, the effectiveness of charge transport in relation to film microstructure and processing has remained elusive. In this study, field‐effect transistors are fabricated and evaluated in order to probe the nature and dynamics of charge transport in thin films of methylammonium lead iodide. A dramatic improvement is shown in the electrical properties upon solvent vapor annealing. The resulting devices exhibit ambipolar transport, with room‐temperature hole and electron mobilities exceeding 10 cm2V−1s−1. The remarkable enhancement in charge carrier mobility is attributed to the increase in the grain size and passivation of grain boundaries via the formation of solvent complexes.

 
more » « less
PAR ID:
10075774
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
4
Issue:
12
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Highly crystalline thin films in organic semiconductors are important for applications in high‐performance organic optoelectronics. Here, the effect of grain boundaries on the Hall effect and charge transport properties of organic transistors based on two exemplary benchmark systems is elucidated: (1) solution‐processed blends of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) small molecule and indacenodithiophene‐benzothiadiazole (C16IDT‐BT) conjugated polymer, and (2) large‐area vacuum evaporated polycrystalline thin films of rubrene (C42H28). It is discovered that, despite the high field‐effect mobilities of up to 6 cm2V−1s−1and the evidence of a delocalized band‐like charge transport, the Hall effect in polycrystalline organic transistors is systematically and significantly underdeveloped, with the carrier coherence factor α < 1 (i.e., yields an underestimated Hall mobility and an overestimated carrier density). A model based on capacitively charged grain boundaries explaining this unusual behavior is described. This work significantly advances the understanding of magneto‐transport properties of organic semiconductor thin films.

     
    more » « less
  2. Abstract

    Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current‐voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter‐laboratory variations are discussed using a (Cs,FA,MA)Pb(I,Br)3halide perovskite thin‐film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance‐free JV‐curve with a potential power conversion efficiency of 24.6 %. For grainsizes above ≈20 nm, intra‐grain charge transport is characterized by terahertz sum mobilities of ≈32 cm2V−1s−1. Drift‐diffusion simulations indicate that these intra‐grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best‐realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presented.

     
    more » « less
  3. Abstract

    In recent years, hybrid perovskite solar cells (HPSCs) have received considerable research attention due to their impressive photovoltaic performance and low‐temperature solution processing capability. However, there remain challenges related to defect passivation and enhancing the charge carrier dynamics of the perovskites, to further increase the power conversion efficiency of HPSCs. In this work, the use of a novel material, phenylhydrazinium iodide (PHAI), as an additive in MAPbI3perovskite for defect minimization and enhancement of the charge carrier dynamics of inverted HPSCs is reported. Incorporation of the PHAI in perovskite precursor solution facilitates controlled crystallization, higher carrier lifetime, as well as less recombination. In addition, PHAI additive treated HPSCs exhibit lower density of filled trap states (1010cm−2) in perovskite grain boundaries, higher charge carrier mobility (≈11 × 10−4cm2V−1s), and enhanced power conversion efficiency (≈18%) that corresponds to a ≈20% improvement in comparison to the pristine devices.

     
    more » « less
  4. Abstract

    Hybrid graphene (Gr)–quantum dot (QD) photodetectors have shown ultrahigh photoresponsivity combining the strong light absorption of QDs with the high mobility of Gr. QDs absorb light and generate photocarriers that are efficiently transported by Gr. Typically, hybrid PbS–QD/graphene photodetectors operate by transferring photogenerated holes from the QDs to Gr while photoelectrons stay in the QDs inducing a photogating mechanism that achieves a responsivity of 6 × 107A W−1. However, despite such high gain, these systems have poor charge collection with quantum efficiency below 25%. Herein, a ZnO intermediate layer (PbS‐QD/ZnO/Gr) is introduced to improve charge collection by forming an effective p‐n PbS‐ZnO junction driving the electrons to the ZnO layer and then to Gr. This improves the photoresponsivity of the devices by nearly an order of magnitude with respect to devices without ZnO. Charge transfer to Gr is demonstrated by monitoring the change in Fermi level under illumination for conventional PbS‐QD/Gr and for ZnO intermediate PbS‐QD/ZnO/Gr devices. These results improve the capabilities of hybrid QD/Gr configurations for optoelectronic devices.

     
    more » « less
  5. Abstract

    Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance. This study presents a grain engineering methodology that combines solvent engineering and heterostructure construction to improve light outcoupling efficiency and defect passivation. Solvent engineering enables precise control over grain size and distribution, increasing light outcoupling to ~40%. Constructing 2D/3D heterostructures with a conjugated cation reduces defect densities and accelerates radiative recombination. The resulting near-infrared perovskite light-emitting diodes achieve a peak external quantum efficiency of 31.4% and demonstrate a maximum brightness of 929 W sr−1m−2. These findings indicate that perovskite light-emitting diodes have potential as cost-effective, high-performance near-infrared light sources for practical applications.

     
    more » « less