Vision-Based Calibration of Dual RCM-Based Robot Arms in Human-Robot Collaborative Minimally Invasive Surgery
- Award ID(s):
- 1637789
- NSF-PAR ID:
- 10075847
- Date Published:
- Journal Name:
- IEEE Robotics and Automation Letters
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2377-3774
- Page Range / eLocation ID:
- 672 to 679
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Human-centered environments provide affordances for and require the use of two-handed, or bimanual, manipulations. Robots designed to function in, and physically interact with, these environments have not been able to meet these requirements because standard bimanual control approaches have not accommodated the diverse, dynamic, and intricate coordinations between two arms to complete bimanual tasks. In this work, we enabled robots to more effectively perform bimanual tasks by introducing a bimanual shared-control method. The control method moves the robot’s arms to mimic the operator’s arm movements but provides on-the-fly assistance to help the user complete tasks more easily. Our method used a bimanual action vocabulary, constructed by analyzing how people perform two-hand manipulations, as the core abstraction level for reasoning about how to assist in bimanual shared autonomy. The method inferred which individual action from the bimanual action vocabulary was occurring using a sequence-to-sequence recurrent neural network architecture and turned on a corresponding assistance mode, signals introduced into the shared-control loop designed to make the performance of a particular bimanual action easier or more efficient. We demonstrate the effectiveness of our method through two user studies that show that novice users could control a robot to complete a range of complex manipulation tasks more successfully using our method compared to alternative approaches. We discuss the implications of our findings for real-world robot control scenarios.more » « less
-
This paper addresses the visibility-based pursuit-evasion problem where a team of pursuer robots operating in a two-dimensional polygonal space seek to establish visibility of an arbitrarily fast evader. This is a computationally challenging task for which the best known complete algorithm takes time doubly exponential in the number of robots. However, recent advances that utilize sampling-based methods have shown progress in generating feasible solutions. An aspect of this problem that has yet to be explored concerns how to ensure that the robots can recover from catastrophic failures which leave one or more robots unexpectedly incapable of continuing to contribute to the pursuit of the evader. To address this issue, we propose an algorithm that can rapidly recover from catastrophic failures. When such failures occur, a replanning occurs, leveraging both the information retained from the previous iteration and the partial progress of the search completed before the failure to generate a new motion strategy for the reduced team of pursuers. We describe an implementation of this algorithm and provide quantitative results that show that the proposed method is able to recover from robot failures more rapidly than a baseline approach that plans from scratch.more » « less
-
Social robots have varied effectiveness when interacting with humans in different interaction contexts. A robot programmed to escort individuals to a different location, for instance, may behave more appropriately in a crowded airport than a quiet library, or vice versa. To address these issues, we exploit ideas from program synthesis and propose an approach to transforming the structure of hand-crafted interaction programs that uses user-scored execution traces as input, in which end users score their paths through the interaction based on their experience. Additionally, our approach guarantees that transformations to a program will not violate task and social expectations that must be maintained across contexts. We evaluated our approach by adapting a robot program to both real-world and simulated contexts and found evidence that making informed edits to the robot's program improves user experience.more » « less