skip to main content


Title: A kinase‐dead version of FERONIA receptor‐like kinase has dose‐dependent impacts on rosette morphology and RALF 1‐mediated stomatal movements
PAR ID:
10075869
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
FEBS Letters
Volume:
592
Issue:
20
ISSN:
0014-5793
Page Range / eLocation ID:
p. 3429-3437
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf‐like kinase HT1 as a required step for stomatal movements caused by changes in CO2concentration. However, whether MPK12 kinase activity is required for regulation of CO2‐induced stomatal responses warrants in‐depth investigation.

    We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2signaling that relies on allosteric inhibition of HT1.

    We show that CO2/HCO3‐enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase‐dead and constitutively active versions of MPK12 in a plant line whereMPK12is deleted, we confirmed that CO2‐dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2/HCO3and present structural modeling that explains the MPK12:HT1 interaction interface.

    These data add to the model that MPK12 kinase‐activity‐independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2concentration.

     
    more » « less
  2. Abstract

    Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many different levels. Recent research has revealed that stress‐responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factorRD26 is regulated byBRsignaling and antagonizesBES1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activateRD26 during drought are still unknown. Here, we demonstrate that the function ofRD26 is modulated byGSK3‐like kinaseBIN2 and protein phosphatase 2CABI1. We show thatABI1, a negative regulator inabscisic acid (ABA)signaling, dephosphorylates and destabilizesBIN2 to inhibitBIN2 kinase activity.RD26 protein is stabilized byABAand dehydration in aBIN2‐dependent manner.BIN2 directly interacts and phosphorylatesRD26in vitroandin vivo.BIN2 phosphorylation ofRD26 is required forRD26 transcriptional activation on drought‐responsive genes.RD26 overexpression suppressed the brassinazole (BRZ)  insensitivity ofBIN2 triple mutantbin2 bil1 bil2, andBIN2 function is required for the drought tolerance ofRD26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relievesABI1 inhibition ofBIN2, allowingBIN2 activation. Sequentially,BIN2 phosphorylates and stabilizesRD26 to promote drought stress response.

     
    more » « less