skip to main content


Title: Hybrid Synthetic‐Biological Hydrogel System for Adipose Tissue Regeneration
Abstract

Hydrogels are promising scaffolds for adipose tissue regeneration. Currently, the incorporation of bioactive molecules in hydrogel system is used, which can increase the cell proliferation rate or improve adipogenic differentiation performance of stromal stem cells but often suffers from high expense or cytotoxicity because of light/thermal curing used for polymerization. In this study, decellularized adipose tissue is incorporated, at varying concentrations, with a thiol‐acrylate fraction that is then polymerized to produce hydrogels via a Michael addition reaction. The results reveal that the major component of isolated adipose‐derived extracellular matrix (ECM) is Collagen I. Mechanical properties of ECM polyethylene glycol (PEG) are not negatively affected by the incorporation of ECM. Additionally, human adipose‐derived stem cells (hASCs) are encapsulated in ECM PEG hydrogel with ECM concentrations varying from 0% to 1%. The results indicate that hASCs maintained the highest viability and proliferation rate in 1% ECM PEG hydrogel with most lipids formation when cultured in adipogenic conditions. Furthermore, more adipose regeneration is observed in 1% ECM group with in vivo study by Day 14 compared to other ECM PEG hydrogels with lower ECM content. Taken together, these findings suggest the ECM PEG hydrogel is a promising substitute for adipose tissue regeneration applications.

 
more » « less
NSF-PAR ID:
10075897
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Bioscience
Volume:
18
Issue:
11
ISSN:
1616-5187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell‐applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin‐like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine‐modified ELP (ELP‐HYD) and aldehyde/benzaldehyde‐modified polyethylene glycol (PEG‐ALD/PEG‐BZA). The reversible DCC crosslinks in ELP‐PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast‐relaxing or slow‐relaxing hydrogels with a range of stiffness (500–3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two‐dimensional substrates, on which ECs exhibited greater cell spreading on fast‐relaxing hydrogels up through 3 days, compared with slow‐relaxing hydrogels at the same stiffness. In three‐dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast‐relaxing, low‐stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast‐relaxing, low‐stiffness hydrogel produced significantly more vascularization compared with the slow‐relaxing, low‐stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast‐relaxing, low‐stiffness hydrogels supported the highest capillary density in vivo.

     
    more » « less
  2. Shear‐thinning, self‐healing hydrogels are promising vehicles for therapeutic cargo delivery due to their ability to be injected using minimally invasive surgical procedures. An injectable hydrogel using a novel combination of dynamic covalent crosslinking with thermoresponsive engineered proteins is presented. Ex situ at room temperature, rapid gelation occurs through dynamic covalent hydrazone bonds by simply mixing two components: hydrazine‐modified elastin‐like protein (ELP) and aldehyde‐modified hyaluronic acid. This hydrogel provides significant mechanical protection to encapsulated human mesenchymal stem cells during syringe needle injection and rapidly recovers after injection to retain the cells homogeneously within a 3D environment. In situ, the ELP undergoes a thermal phase transition, as confirmed by coherent anti‐Stokes Raman scattering microscopy observation of dense ELP thermal aggregates. The formation of the secondary network reinforces the hydrogel and results in a tenfold slower erosion rate compared to a control hydrogel without secondary thermal crosslinking. This improved structural integrity enables cell culture for three weeks postinjection, and encapsulated cells maintain their ability to differentiate into multiple lineages, including chondrogenic, adipogenic, and osteogenic cell types. Together, these data demonstrate the promising potential of ELP–HA hydrogels for injectable stem cell transplantation and tissue regeneration.

     
    more » « less
  3. Osteoarthritis (OA), a chronic and degenerative joint disease, remains a challenge in treatment due to the lack of disease-modifying therapies. As a promising therapeutic agent, adipose-derived stem cells (ADSCs) have an effective anti-inflammatory and chondroprotective paracrine effect that can be enhanced by genetic modification. Unfortunately, direct cell delivery without matrix support often results in poor viability of therapeutic cells. Herein, a hydrogel implant approach that enabled intra-articular delivery of gene-engineered ADSCs was developed for improved therapeutic outcomes in a surgically induced rat OA model. An injectable extracellular matrix (ECM)-mimicking hydrogel was prepared as the carrier for cell delivery, providing a favorable microenvironment for ADSC spreading and proliferation. The ECM-mimicking hydrogel could reduce cell death during and post injection. Additionally, ADSCs were genetically modified to overexpress transforming growth factor-β1 (TGF-β1), one of the paracrine factors that exert an anti-inflammatory and pro-anabolic effect. The gene-engineered ADSCs overexpressing TGF-β1 (T-ADSCs) had an enhanced paracrine effect on OA-like chondrocytes, which effectively decreased the expression of tumor necrosis factor-alpha and increased the expression of collagen II and aggrecan. In a surgically induced rat OA model, intra-articular injection of the T-ADSC-loaded hydrogel markedly reduced cartilage degeneration, joint inflammation, and the loss of the subchondral bone. Taken together, this study provides a potential biomaterial strategy for enhanced OA treatment by delivering the gene-engineered ADSCs within an ECM-mimicking hydrogel. 
    more » « less
  4. Abstract

    The role of hydrogel properties in regulating the phenotype of triple negative metastatic breast cancer is investigated using four cell lines: the MDA‐MB‐231 parental line and three organotropic sublines BoM‐1833 (bone‐tropic), LM2‐4175 (lung‐tropic), and BrM2a‐831 (brain‐tropic). Each line is encapsulated and cultured for 15 days in three poly(ethylene glycol) (PEG)‐based hydrogel formulations composed of proteolytically degradable PEG, integrin‐ligating RGDS, and the non‐degradable crosslinker N‐vinyl pyrrolidone. Dormancy‐associated metrics including viable cell density, proliferation, metabolism, apoptosis, chemoresistance, phosphorylated‐ERK and ‐p38, and morphological characteristics are quantified. A multimetric classification approach is implemented to categorize each hydrogel‐induced phenotype as: 1) growth, 2) balanced tumor dormancy, 3) balanced cellular dormancy, or 4) restricted survival, cellular dormancy. Hydrogels with high adhesivity and degradability promote growth. Hydrogels with no adhesivity, but high degradability, induce restricted survival, cellular dormancy in the parental line and balanced cellular dormancy in the organotropic lines. Hydrogels with reduced adhesivity and degradability induce balanced cellular dormancy in the parental and lung‐tropic lines and balanced tumor mass dormancy in bone‐ and brain‐tropic lines. The ability to induce escape from dormancy via dynamic incorporation of RGDS is also presented. These results demonstrate that ECM properties and organ‐tropism synergistically regulate cancer cell phenotype and dormancy.

     
    more » « less
  5. Abstract

    Functional tissue engineered heart valves (TEHV) have been an elusive goal for nearly 30 years. Among the persistent challenges are the requirements for engineered valve leaflets that possess nonlinear elastic tissue biomechanical properties, support quiescent fibroblast phenotype, and resist osteogenic differentiation. Nanocellulose is an attractive tunable biological material that has not been employed to this application. In this study, we fabricated a series of photocrosslinkable composite hydrogels mNCC‐MeGel (mNG) by conjugating TEMPO‐modified nanocrystalline cellulose (mNCC) onto the backbone of methacrylated gelatin (MeGel). Their structures were characterized by FTIR,1HNMR and uniaxial compression testing. Human adipose‐derived mesenchymal stem cells (HADMSC) were encapsulated within the material and evaluated for valve interstitial cell phenotypes over 14 days culture in both normal and osteogenic media. Compared to the MeGel control group, the HADMSC encapsulated within mNG showed decreased alpha smooth muscle actin (αSMA) expression and increased vimentin and aggrecan expression, suggesting the material supports a quiescent fibroblastic phenotype. Under osteogenic media conditions, HADMSC within mNG hydrogels showed lower expression of osteogenic genes, including Runx2 and osteocalcin, indicating resistance toward calcification. As a proof of principle, the mNG hydrogel, combined with a viscosity enhancing agent, was used to 3D bioprint a tall, self‐standing tubular structure that sustained cell viability. Together, these results identify mNG as an attractive biomaterial for TEHV applications.

     
    more » « less