skip to main content

Title: Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation

As the physical environment of the Arctic Ocean shifts seasonally from ice‐covered to open water, the limiting resource for phytoplankton growth shifts from light to nutrients. To understand the phytoplankton photophysiological responses to these environmental changes, we evaluated photoacclimation strategies of phytoplankton during the low‐light, high‐nutrient, ice‐covered spring and the high‐light, low‐nutrient, ice‐free summer. Field results show that phytoplankton effectively acclimated to reduced irradiance beneath the sea ice by maximizing light absorption and photosynthetic capacity. In fact, exceptionally high maximum photosynthetic rates and efficiency observed during the spring demonstrate that abundant nutrients enable prebloom phytoplankton to become “primed” for increases in irradiance. This ability to quickly exploit increasing irradiance can help explain the ability of phytoplankton to generate massive blooms beneath sea ice. In comparison, phytoplankton growth and photosynthetic rates are reduced postbloom due to severe nutrient limitation. These results advance our knowledge of photoacclimation by polar phytoplankton in extreme environmental conditions and indicate how phytoplankton may acclimate to future changes in light and nutrient resources under continued climate change.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Page Range / eLocation ID:
p. 284-301
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Light and dissolved iron (dFe) availability control net primary production (NPP) in much of the Southern Ocean, but the primary controller during spring in the western Antarctic Peninsula has never been assessed. Underwater light and dFe availability are sensitive to climate‐induced changes in upper ocean circulation, stratification, and sea ice cover, which can affect NPP and phytoplankton community composition, both of which can alter carbon drawdown and food web structure. We estimated in situ NPP, net community production, and heterotrophic respiration and contextualized our field measurements with satellite‐based historical NPP estimates. Average light exposure mainly controlled NPP, while low dFe was associated with greatest NPP, indicating that spring phytoplankton growth is light‐limited and not dFe‐limited. Using experiments that simulated varying mixed layer depths by exposing phytoplankton to a short period of in situ surface light (up to 150× the mean light in the mixed layer, comparable to the difference in light experienced by phytoplankton mixed from 50 m to the surface), we assessed the effect of phytoplankton photoacclimation on NPP and relative success of individual taxa. At moderate light exposure (<30×), phytoplankton experienced little photodamage or changes in NPP, andPhaeocystis antarcticagrew more than diatoms. Conversely, phytoplankton exposed to high light (>60×) experienced significant photodamage, declines in NPP, and declines inP. antarctica, with no consistent changes in diatoms. These results support the idea thatP. antarcticais better adapted to variable light than diatoms and suggest that deeper mixed layers with variable light will favorP. antarctica.

    more » « less
  2. null (Ed.)
    Abstract Over the last ten years, satellite and geographically constrained in situ observations largely focused on the northern hemisphere have suggested that annual phytoplankton biomass cycles cannot be fully understood from environmental properties controlling phytoplankton division rates (e.g., nutrients and light), as they omit the role of ecological and environmental loss processes (e.g., grazing, viruses, sinking). Here, we use multi-year observations from a very large array of robotic drifting floats in the Southern Ocean to determine key factors governing phytoplankton biomass dynamics over the annual cycle. Our analysis reveals seasonal phytoplankton accumulation (‘blooming’) events occurring during periods of declining modeled division rates, an observation that highlights the importance of loss processes in dictating the evolution of the seasonal cycle in biomass. In the open Southern Ocean, the spring bloom magnitude is found to be greatest in areas with high dissolved iron concentrations, consistent with iron being a well-established primary limiting nutrient in this region. Under ice observations show that biomass starts increasing in early winter, well before sea ice begins to retreat. The average theoretical sensitivity of the Southern Ocean to potential changes in seasonal nutrient and light availability suggests that a 10% change in phytoplankton division rate may be associated with a 50% reduction in mean bloom magnitude and annual primary productivity, assuming simple changes in the seasonal magnitude of phytoplankton division rates. Overall, our results highlight the importance of quantifying and accounting for both division and loss processes when modeling future changes in phytoplankton biomass cycles. 
    more » « less
  3. Abstract: The timing of sea ice retreat, light availability, and sea surface stratification largely control the phytoplankton community composition in the Chukchi Sea. This region is experiencing a significant warming trend, an overall decrease in sea ice cover, and a documented decline in annual sea ice persistence and thickness over the past several decades. The consequences of earlier seasonal sea ice retreat and a longer sea-ice-free season on phytoplankton community composition warrant investigation. We applied multivariate statistical techniques to elucidate the mechanisms that relate environmental variables to phytoplankton community composition in the Chukchi Sea using data collected during a single field campaign in the summer of 2011. Three phytoplankton groups emerged that were correlated with sea ice, sea surface temperature, nutrients, salinity, and light. Longer ice-free duration in a future Chukchi Sea will result in warmer sea surface temperatures and nutrient depletion, which we conclude will favor other phytoplankton types over larger diatoms. Plain Language Summary: In the Chukchi Sea, the seasonality of sea ice shapes ecosystem structure of the water column under both sea-ice-covered and sea-ice-free conditions. As such, phytoplankton community composition under both conditions responds to water column structure and nutrient availability. Owing to recent warming in the Arctic, sea ice is thinner and retreats earlier. To date, we do not fully understand the long-term consequences of earlier sea ice retreat on phytoplankton community composition and carbon biomass. To this end, we used environmental and phytoplankton data to relate how differences in ecosystem function under sea-ice-covered and sea-ice-free conditions govern phytoplankton communities. The results from this data set suggest that a future, sea-ice-free Chukchi Sea will exhibit lower phytoplankton biomass, impacting the food web and carbon export. 
    more » « less
  4. Abstract

    Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.

    more » « less
  5. Lakes are key ecosystems within the global biogeosphere. However, the bottom-up controls on the biological productivity of lakes, including surface temperature, ice phenology, nutrient loads and mixing regime, are increasingly altered by climate warming and land-use changes. To better understand the environmental drivers of lake productivity, we assembled a dataset on chlorophyll-a concentrations, as well as associated water quality parameters and surface solar irradiance, for temperate and cold-temperate lakes experiencing seasonal ice cover. We developed a method to identify periods of rapid algal growth from in situ chlorophyll-a time series data and applied it to measurements performed between 1964 and 2019 across 357 lakes, predominantly located north of 40°. Long-term trends show that the algal growth windows have been occurring earlier in the year, thus potentially extending the growing season and increasing the annual productivity of northern lakes. The dataset is also used to analyze the relationship between chlorophyll-a growth rates and solar irradiance. Lakes of higher trophic status exhibit a higher sensitivity to solar radiation, especially at moderate irradiance values during spring. The lower sensitivity of chlorophyll-a growth rates to solar irradiance in oligotrophic lakes likely reflects the dominant role of nutrient limitation. Chlorophyll-a growth rates are significantly influenced by light availability in spring but not in summer and fall, consistent with a switch to top-down control of summer and fall algal communities. The growth window dataset can be used to analyze trends in lake productivity across the northern hemisphere or at smaller, regional scales. We present some general trends in the data and encourage other researchers to use the open dataset for their own research questions. 
    more » « less