skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: A Self‐Healing Room‐Temperature Liquid‐Metal Anode for Alkali‐Ion Batteries
Abstract

Given the high energy density, alkali metals are preferred in rechargeable batteries as anodes, however, with significant limitations such as dendrite growth and volume expansion, leading to poor cycle life and safety concerns. Herein a room‐temperature liquid alloy system is proposed as a possible solution for its self‐recovery property. Full extraction of alkali metal ions from the ternary alloy brings it back to the binary liquid eutectic, and thus enables a self‐healing process of the cracked or pulverized structure during cycling. A half‐cell discharge specific capacity of up to 706.0 mAh g−1in lithium‐ion battery and 222.3 mAh g−1for sodium‐ion battery can be delivered at 0.1C; at a high rate of 5C, a sizable capacity of over 400 mAh g−1for Li and 60 mAh g−1for Na could be retained. Li and Na ion full cells with considerable stability are demonstrated when pairing liquid metal with typical cathode materials, LiFePO4, and P2‐Na2/3[Ni1/3Mn2/3]O2. Remarkable cyclic durability, considerable theoretical capacity utilization, and reasonable rate stability present in this work allow this novel anode system to be a potential candidate for rechargeable alkali‐ion batteries.

 
more » « less
PAR ID:
10075994
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
46
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Redox‐active organic compounds have attracted substantial attention as charge storage materials, owing to their high theoretical capacity. Herein, a two‐dimensional organic electrode material is prepared by using hydrothermally polymerized dopamine molecules on graphene nanosheets. Two‐dimensional polydopamine is employed as a positive electrode for storing alkali metal ions based on the surface redox reaction between oxygen functional groups and alkali ions. The two‐dimensional polydopamine positive electrodes deliver high capacities of 255 mAh g−1in Li cells, 150 mAh g−1in Na cells, and 124 mAh g−1in K cells at 0.1 A g−1, demonstrating a promising organic positive electrode for rechargeable alkali‐ion batteries.

     
    more » « less
  2. Abstract

    Currently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu3(HHTP)2, a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode. Owing to its unique structure, hydrated Zn2+ions which are inserted directly into the host structure, Cu3(HHTP)2, allow high diffusion rate and low interfacial resistance which enable the Cu3(HHTP)2cathode to follow the intercalation pseudocapacitance mechanism. Cu3(HHTP)2exhibits a high reversible capacity of 228 mAh g−1at 50 mA g−1. At a high current density of 4000 mA g−1(~18 C), 75.0% of the initial capacity is maintained after 500 cycles. These results provide key insights into high-performance, 2D conductive MOF designs for battery electrodes.

     
    more » « less
  3. Abstract

    Layered transition metal oxides are appealing cathodes for sodium‐ion batteries due to their overall advantages in energy density and cost. But their stabilities are usually compromised by the complicated phase transition and the oxygen redox, particularly when operating at high voltages, leading to poor structural stability and substantial capacity loss. Here an integrated strategy combing the high‐entropy design with the superlattice‐stabilization to extend the cycle life and enhance the rate capability of layered cathodes is reported. It is shown that the as‐prepared high‐entropy Na2/3Li1/6Fe1/6Co1/6Ni1/6Mn1/3O2cathode enables a superlattice structure with Li/transition metal ordering and delivers excellent electrochemical performance that is not affected by the presence of phase transition and oxygen redox. It achieves a high reversible capacity (171.2 mAh g−1at 0.1 C), a high energy density (531 Wh kg−1), extended cycling stability (89.3% capacity retention at 1 C for 90 cycles and 63.7% capacity retention at 5 C after 300 cycles), and excellent fast‐charging capability (78 mAh g−1at 10 C). This strategy would inspire more rational designs that can be leveraged to improve the reliability of layered cathodes for secondary‐ion batteries.

     
    more » « less
  4. Abstract

    The significant performance decay in conventional graphite anodes under low‐temperature conditions is attributed to the slow diffusion of alkali metal ions, requiring new strategies to enhance the charge storage kinetics at low temperatures. Here, nitrogen (N)‐doped defective crumpled graphene (NCG) is employed as a promising anode to enable stable low‐temperature operation of alkali metal‐ion storage by exploiting the surface‐controlled charge storage mechanisms. At a low temperature of −40 °C, the NCG anodes maintain high capacities of ≈172 mAh g−1for lithium (Li)‐ion, ≈107 mAh g−1for sodium (Na)‐ion, and ≈118 mAh g−1for potassium (K)‐ion at 0.01 A g−1with outstanding rate‐capability and cycling stability. A combination of density functional theory (DFT) and electrochemical analysis further reveals the role of the N‐functional groups and defect sites in improving the utilization of the surface‐controlled charge storage mechanisms. In addition, the full cell with the NCG anode and a LiFePO4cathode shows a high capacity of ≈73 mAh g−1at 0.5 °C even at −40 °C. The results highlight the importance of utilizing the surface‐controlled charge storage mechanisms with controlled defect structures and functional groups on the carbon surface to improve the charge storage performance of alkali metal‐ion under low‐temperature conditions.

     
    more » « less
  5. Abstract

    Graphite anodes offer low volumetric capacity in lithium‐ion batteries. By contrast, tellurene is expected to alloy with alkali metals with high volumetric capacity (≈2620 mAh cm−3), but to date there is no detailed study on its alloying behavior. In this work, the alloying response of a range of alkali metals (A = Li, Na, or K) with few‐layer Te is investigated. In situ transmission electron microscopy and density functional theory both indicate that Te alloys with alkali metals forming A2Te. However, the crystalline order of alloyed products varies significantly from single‐crystal (for Li2Te) to polycrystalline (for Na2Te and K2Te). Typical alloying materials lose their crystallinity when reacted with Li—the ability of Te to retain its crystallinity is therefore surprising. Simulations reveal that compared to Na or K, the migration of Li is highly “isotropic” in Te, enabling its crystallinity to be preserved. Such isotropic Li transport is made possible by Te's peculiar structure comprising chiral‐chains bound by van der Waals forces. While alloying with Na and K show poor performance, with Li, Te exhibits a stable volumetric capacity of ≈700 mAh cm−3, which is about twice the practical capacity of commercial graphite.

     
    more » « less