It has been extensively studied in the literature that solving Maxwell equations is very sensitive to mesh structures, space conformity and solution regularity. Roughly speaking, for almost all the methods in the literature, optimal convergence for low-regularity solutions heavily relies on conforming spaces and highly regular simplicial meshes. This can be a significant limitation for many popular methods based on broken spaces and non-conforming or polytopal meshes often used for inhomogeneous media, as the discontinuity of electromagnetic parameters can lead to quite low regularity of solutions near media interfaces. This very issue can be potentially worsened by geometric singularities, making those methods particularly challenging to apply. In this paper, we present a lowest-order virtual element method for solving an indefinite time-harmonic Maxwell equation in 2D inhomogeneous media with quite arbitrary polytopal meshes, and the media interface is allowed to have geometric singularity to cause low regularity. We employ the “virtual mesh” technique originally invented in [S. Cao, L. Chen and R. Guo, A virtual finite element method for two-dimensional Maxwell interface problems with a background unfitted mesh, Math. Models Methods Appl. Sci. 31 (2021) 2907–2936] for error analysis. This work admits three key novelties: (i) the proposed method is theoretically guaranteed to achieve robust optimal convergence for solutions with merely [Formula: see text] regularity, [Formula: see text]; (ii) the polytopal element shape can be highly anisotropic and shrinking, and an explicit formula is established to describe the relationship between the shape regularity and solution regularity; (iii) we show that the stabilization term is needed to produce optimal convergent solutions for indefinite problems. Extensive numerical experiments will be given to demonstrate the effectiveness of the proposed method. 
                        more » 
                        « less   
                    
                            
                            Anisotropic Locally-Conformal Perfectly Matched Layer for Higher Order Curvilinear Finite-Element Modeling
                        
                    
    
            A perfectly matched layer (PML) method is proposed for electrically large curvilinear meshes based on a higher order finite-element modeling paradigm and the concept of transformation electromagnetics. The method maps the non-Maxwellian formulation of the locally conformal PML to a purely Maxwellian implementation using continuously varying anisotropic and inhomogeneous material parameters. An approach to the implementation of a conformal PML for higher order meshes is also presented, based on a method of normal projection for PML mesh generation around an already existing convex volume mesh of a dielectric scatterer, with automatically generated constitutive material parameters. Once the initial mesh is generated, a PML optimization method based on gradient descent is implemented to most accurately match the PML material parameters to the geometrical interface. The numerical results show that the implementation of a conformal PML in the higher order finite-element modeling paradigm dramatically reduces the reflection error when compared to traditional PMLs with piecewise constant material parameters. The ability of the new PML to accurately and efficiently model scatterers with a large variation in geometrical shape and those with complex material compositions is demonstrated in examples of a dielectric almond and a continuously inhomogeneous and anisotropic transformation-optics cloaking structure, respectively. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1646562
- PAR ID:
- 10076263
- Date Published:
- Journal Name:
- IEEE transactions on antennas and propagation
- Volume:
- 65
- Issue:
- 12
- ISSN:
- 0018-926X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Faithful, accurate, and successful cardiac biomechanics and electrophysiological simulations require patient-specific geometric models of the heart. Since the cardiac geometry consists of highly-curved boundaries, the use of high-order meshes with curved elements would ensure that the various curves and features present in the cardiac geometry are well-captured and preserved in the corresponding mesh. Most other existing mesh generation techniques require computer-aided design files to represent the geometric boundary, which are often not available for biomedical applications. Unlike such methods, our technique takes a high-order surface mesh, generated from patient medical images, as input and generates a high-order volume mesh directly from the curved surface mesh. In this paper, we use our direct high-order curvilinear tetrahedral mesh generation method [1] to generate several second-order cardiac meshes. Our meshes include the left ventricle myocardia of a healthy heart and hearts with dilated and hypertrophic cardiomyopathy. We show that our high-order cardiac meshes do not contain inverted elements and are of sufficiently high quality for use in cardiac finite element simulations.more » « less
- 
            For a given PDE problem, three main factors affect the accuracy of FEM solutions: basis order, mesh resolution, and mesh element quality. The first two factors are easy to control, while controlling element shape quality is a challenge, with fundamental limitations on what can be achieved. We propose to use p-refinement (increasing element degree) to decouple the approximation error of the finite element method from the domain mesh quality for elliptic PDEs. Our technique produces an accurate solution even on meshes with badly shaped elements, with a slightly higher running time due to the higher cost of high-order elements. We demonstrate that it is able to automatically adapt the basis to badly shaped elements, ensuring an error consistent with high-quality meshing, without any per-mesh parameter tuning. Our construction reduces to traditional fixed-degree FEM methods on high-quality meshes with identical performance. Our construction decreases the burden on meshing algorithms, reducing the need for often expensive mesh optimization and automatically compensates for badly shaped elements, which are present due to boundary con- straints or limitations of current meshing methods. By tackling mesh gen- eration and finite element simulation jointly, we obtain a pipeline that is both more efficient and more robust than combinations of existing state of the art meshing and FEM algorithms.more » « less
- 
            null (Ed.)We present the design and implementation details of a geometric multigrid method on adaptively refined meshes for massively parallel computations. The method uses local smoothing on the refined part of the mesh. Partitioning is achieved by using a space filling curve for the leaf mesh and distributing ancestors in the hierarchy based on the leaves. We present a model of the efficiency of mesh hierarchy distribution and compare its predictions to runtime measurements. The algorithm is implemented as part of the deal.II finite-element library and as such available to the public.more » « less
- 
            A virtual element method (VEM) with the first-order optimal convergence order is developed for solving two-dimensional Maxwell interface problems on a special class of polygonal meshes that are cut by the interface from a background unfitted mesh. A novel virtual space is introduced on a virtual triangulation of the polygonal mesh satisfying a maximum angle condition, which shares exactly the same degrees of freedom as the usual [Formula: see text]-conforming virtual space. This new virtual space serves as the key to prove that the optimal error bounds of the VEM are independent of high aspect ratio of the possible anisotropic polygonal mesh near the interface.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    