skip to main content


Title: Mercury isotope signatures record photic zone euxinia in the Mesoproterozoic ocean

Photic zone euxinia (PZE) is a condition where anoxic, H2S-rich waters occur in the photic zone (PZ). PZE has been invoked as an impediment to the evolution of complex life on early Earth and as a kill mechanism for Phanerozoic mass extinctions. Here, we investigate the potential application of mercury (Hg) stable isotopes in marine sedimentary rocks as a proxy for PZE by measuring Hg isotope compositions in late Mesoproterozoic (∼1.1 Ga) shales that have independent evidence of PZE during discrete intervals. Strikingly, a significantly negative shift of Hg mass-independent isotope fractionation (MIF) was observed during euxinic intervals, suggesting changes in Hg sources or transformations in oceans coincident with the development of PZE. We propose that the negative shift of Hg MIF was most likely caused by (i) photoreduction of Hg(II) complexed by reduced sulfur ligands in a sulfide-rich PZ, and (ii) enhanced sequestration of atmospheric Hg(0) to the sediments by thiols and sulfide that were enriched in the surface ocean as a result of PZE. This study thus demonstrates that Hg isotope compositions in ancient marine sedimentary rocks can be a promising proxy for PZE and therefore may provide valuable insights into changes in ocean chemistry and its impact on the evolution of life.

 
more » « less
NSF-PAR ID:
10076562
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
42
ISSN:
0027-8424
Page Range / eLocation ID:
p. 10594-10599
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The driving forces, kill and recovery mechanisms for the end-Permian mass extinction (EPME), the largest Phanerozoic biological crisis, are under debate. Sedimentary records of mercury enrichment and mercury isotopes have suggested the impact of volcanism on the EPME, yet the causes of mercury enrichment and isotope variations remain controversial. Here, we model mercury isotope variations across the EPME to quantitatively assess the effects of volcanism, terrestrial erosion and photic zone euxinia (PZE, toxic, sulfide-rich conditions). Our numerical model shows that while large-scale volcanism remains the main driver of widespread mercury enrichment, the negative shifts of Δ199Hg isotope signature across the EPME cannot be fully explained by volcanism or terrestrial erosion as proposed before, but require additional fractionation by marine mercury photoreduction under enhanced PZE conditions. Thus our model provides further evidence for widespread and prolonged PZE as a key kill mechanism for both the EPME and the impeded recovery afterward.

     
    more » « less
  2. Mercury isotopic compositions of amphipods and snailfish from deep-sea trenches reveal information on the sources and transformations of mercury in the deep oceans. Evidence for methyl-mercury subjected to photochemical degradation in the photic zone is provided by odd-mass independent isotope values (Δ199Hg) in amphipods from the Kermadec Trench, which average 1.57‰ (±0.14,n= 12, SD), and amphipods from the Mariana Trench, which average 1.49‰ (±0.28,n= 13). These values are close to the average value of 1.48‰ (±0.34,n= 10) for methyl-mercury in fish that feed at ∼500-m depth in the central Pacific Ocean. Evidence for variable contributions of mercury from rainfall is provided by even-mass independent isotope values (Δ200Hg) in amphipods that average 0.03‰ (±0.02,n= 12) for the Kermadec and 0.07‰ (±0.01,n= 13) for the Mariana Trench compared to the rainfall average of 0.13 (±0.05,n= 8) in the central Pacific. Mass-dependent isotope values (δ202Hg) are elevated in amphipods from the Kermadec Trench (0.91 ±0.22‰,n= 12) compared to the Mariana Trench (0.26 ±0.23‰,n= 13), suggesting a higher level of microbial demethylation of the methyl-mercury pool before incorporation into the base of the foodweb. Our study suggests that mercury in the marine foodweb at ∼500 m, which is predominantly anthropogenic, is transported to deep-sea trenches primarily in carrion, and then incorporated into hadal (6,000-11,000-m) food webs. Anthropogenic Hg added to the surface ocean is, therefore, expected to be rapidly transported to the deepest reaches of the oceans.

     
    more » « less
  3. Abstract

    The Ediacaran Period (~635–539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals.

     
    more » « less
  4. Abstract

    Uranium isotopes (238U/235U) have been used widely over the last decade as a global proxy for marine redox conditions. The largest isotopic fractionations in the system occur during U reduction, removal, and burial. Applying this basic framework, global U isotope mass balance models have been used to predict the extent of ocean floor anoxia during key intervals throughout Earth's history. However, there are currently minimal constraints on the isotopic fractionation that occurs during reduction and burial in anoxic and iron‐rich (ferruginous) aquatic systems, despite the consensus that ferruginous conditions are thought to have been widespread through the majority of our planet's history. Here we provide the first exploration of δ238U values in natural ferruginous settings. We measured δ238U in sediments from two modern ferruginous lakes (Brownie Lake and Lake Pavin), the water column of Brownie Lake, and sedimentary rocks from the Silurian‐Devonian boundary that were deposited under ferruginous conditions. Additionally, we provide new δ238U data from core top sediments from anoxic but nonsulfidic settings in the Peru Margin oxygen minimum zone. We find that δ238U values from sediments deposited in all of these localities are highly variable but on average are indistinguishable from adjacent oxic sediments. This forces a reevaluation of the global U isotope mass balance and how U isotope values are used to reconstruct the evolution of the marine redox landscape.

     
    more » « less
  5. Abstract

    Carbon isotope (δ13C) records from marine sediments and sedimentary rocks have been extensively used in Cenozoic chemostratigraphy. The early Paleogene interval in particular has received exceptional attention because negative carbon isotope excursions (CIEs) documented in the sedimentary record, for example, at the Paleocene Eocene Thermal Maximum (PETM), ca ∼56 Ma, are believed to reflect significant global carbon cycle perturbations during the warmest interval of the Cenozoic era. However, while bulk carbonate δ13C values exhibit robust correlations across widely separated marine sedimentary basins, their absolute values and magnitude of CIEs vary spatially, especially over time intervals characterized by major deviations in global carbon cycling. Moreover, bulk carbonates in open‐marine environments are an ensemble of different components, each with a distinct isotope composition. Consequently, a comprehensive interpretation of the bulk‐δ13C record requires an understanding of co‐evolution of these components. In this study, we dissect sediments, from the late Paleocene‐early Eocene interval, at ODP Site 1209 (Shatsky Rise, Pacific Ocean) to investigate how a temporally varying bulk carbonate ensemble influences the overall carbon isotope record. A set of 45 samples were examined for δ13C and δ18O compositions, as bulk and individual size fractions. We find a significant increase in coarse‐fraction abundance across the PETM, driven by a changing community structure of calcifiers, modulating the size of the CIE at Site 1209 and thus making it distinct from those recorded at other open‐marine sites. These results highlight the importance of biogeography in the marine stable isotope record, especially when isotope excursions are driven by climate‐ and/or carbon cycle changes. In addition, community composition changes will alter the interpretation of weight percent coarse fraction as proxy for carbonate dissolution.

     
    more » « less