skip to main content


Title: Solute Effect on Strength and Formability of Mg: A First-Principle Study
In wrought magnesium alloys, room temperature plasticity is largely controlled by limited slip systems such as basal slip and tension/compression twins. The insufficient number of active slip systems limits strength and ductility preventing broader structural applicability of Mg-alloys. Hence, we employ first-principle calculations to investigate the effects of Y and Al alloying elements on shearability and dislocation motion on various slip systems through ideal shear resistance and generalized stacking fault energy calculations. Yttrium is seen to lower the ideal shear resistance and dislocation motion energetics on all the slip systems. On the other hand, aluminum increases the ideal shear resistance but decreases the energy barrier for dislocation motion on various slip systems. The profound effects of solute addition result from the charge transfer between the solute atom and surrounding magnesium atoms.  more » « less
Award ID(s):
1463656
NSF-PAR ID:
10076608
Author(s) / Creator(s):
Date Published:
Journal Name:
The minerals, metals & materials series
ISSN:
2367-1181
Page Range / eLocation ID:
483-489
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except at very high temperatures. Here we highlight the wide variety of local chemical ordering (LCO) that sets these concentrated SSs apart from traditional solvent-solute ones. Using atomistic simulations, we reveal that the LCO of the multi-principal-element NiCoCr SS changes with alloy processing conditions, producing a wide range of generalized planar fault energies. We show that the LCO heightens the ruggedness of the energy landscape and raises activation barriers governing dislocation activities. This influences the selection of dislocation pathways in slip, faulting, and twinning, and increases the lattice friction to dislocation motion via a nanoscale segment detrapping mechanism. In contrast, severe plastic deformation reduces the LCO towards random SS.

     
    more » « less
  2. The γ-surface represents the energetic cost associated with relative, rigid body sliding of crystal planes and contains useful information related to plastic deformation of the respective crystal. Here, we present γ-surfaces for the most active glide planes of the energetic molecular crystal cyclotetramethylene-tetranitramine in the monoclinic β phase, i.e., (101) and (011), at pressures up to 15 GPa. We observe the existence of stable staking faults in both planes and at all pressures and report the increase in the stacking fault energy with pressure. We also report the energetic barriers for sliding along minimum energy paths in various directions contained in these planes as well as the critical resolved shear stress at which the crystal becomes unstable in the absence of crystal defects. [100] traces of the γ-surface for multiple planes such as (001), (010), and (021) are further evaluated in view of the previously reported importance of this slip direction for dislocation cross-slip. It is observed that increasing the pressure does not modify the topology of the γ-surface in an essential way, which implies that although barriers for slip increase, the general phenomenology of dislocation motion is not modified qualitatively by the pressure. The energy barriers increase faster with pressure in the (011) plane, and hence, it is implied that the (101) plane is the most active glide plane at high pressures. The results are generally relevant for studies of plastic deformation in this molecular crystal.

     
    more » « less
  3. Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum.

     
    more » « less
  4. Abstract

    For some polycrystalline materials such as austenitic stainless steel, magnesium, TATB, and HMX, twinning is a crucial deformation mechanism when the dislocation slip alone is not enough to accommodate the applied strain. To predict this coupling effect between crystal plasticity and deformation twinning, we introduce a mathematical model and the corresponding monolithic and operator splitting solvers that couple the crystal plasticity material model with a phase field twining model such that the twinning nucleation and propagation can be captured via an implicit function. While a phase field order parameter is introduced to quantify the twinning induced shear strain and corresponding crystal reorientation, the evolution of the order parameter is driven by the resolved shear stress on the twinning system. To avoid introducing an additional set of slip systems for dislocation slip within the twinning region, we introduce a Lie algebra averaging technique to determine the Schmid tensor throughout the twinning transformation. Three different numerical schemes are proposed to solve the coupled problem, including a monolithic scheme, an alternating minimization scheme, and an operator splitting scheme. Three numerical examples are utilized to demonstrate the capability of the proposed model, as well as the accuracy and computational cost of the solvers.

     
    more » « less
  5. Due to fluctuations in nearest-neighbor distances and chemistry within the unit cell, high-entropy alloys are believed to have a much higher resistance to dislocation motion than pure crystals. Here, we investigate the coarse-grained dynamics of a number of dislocations being active during a slip event. We found that the time-resolved dynamics of slip is practically identical in Au〈001〉 and an Al0.3CoCrFeNi〈001〉 high-entropy alloy, but much faster than in Nb〈001〉. Differences between the FCC-crystals are seen in the spatiotemporal velocity profile, with faster acceleration and slower velocity relaxation in the high-entropy alloy. Assessing distributions that characterize the intermittently evolving plastic flow reveals material-dependent scaling exponents for size, duration, and velocity–size distributions. The results are discussed in view of the underlying dislocation mobility. 
    more » « less