skip to main content


Title: Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages
Summary

Insects in the Auchenorrhyncha (Hemiptera: Suborder) established nutritional symbioses with bacteria approximately 300 million years ago (MYA). The suborder split early during its diversification (~ 250 MYA) into the Fulgoroidea (planthoppers) and Cicadomorpha (leafhoppers and cicadas). The two lineages share some symbionts, includingSulciaand possibly aBetaproteobacteriathat collaboratively provide their hosts with 10 essential amino acids (EAA). Some hosts harbour three bacteria, as is common among planthoppers. However, genomic studies are currently restricted to the dual‐bacterial symbioses found in Cicadomorpha, leaving the origins and functions of these more complex symbioses unclear. To address these questions, we sequenced the genomes and performed phylogenomic analyses of ‘CandidatusSulcia muelleri’ (Bacteroidetes), ‘Ca. Vidania fulgoroideae’ (Betaproteobacteria) and ‘Ca. Purcelliella pentastirinorum’ (Gammaproteobacteria) from a planthopper (Cixiidae:Oliarus). In contrast to the Cicadomorpha, nutritional synthesis responsibilities are rearranged between the cixiid symbionts. AlthoughSulciahas a highly conserved genome across the Auchenorrhyncha, in the cixiids it is greatly reduced and provides only three EAAs.Vidaniacontributes the remaining seven EAAs. Phylogenomic results suggest that it represents an ancient symbiont lineage paired withSulciathroughout the Auchenorrhyncha. Finally,Purcelliellawas recently acquired from plant‐insect associated bacteria (PantoeaErwinia) to provide B vitamins and metabolic support to its degenerate partners.

 
more » « less
NSF-PAR ID:
10076624
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
20
Issue:
12
ISSN:
1462-2912
Page Range / eLocation ID:
p. 4461-4472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Angert, Esther (Ed.)
    Abstract

    Planthoppers in the family Cixiidae (Hemiptera: Auchenorrhyncha: Fulgoromorpha) harbor a diverse set of obligate bacterial endosymbionts that provision essential amino acids and vitamins that are missing from their plant-sap diet. “Candidatus Sulcia muelleri” and “Ca. Vidania fulgoroidea” have been associated with cixiid planthoppers since their origin within the Auchenorrhyncha, whereas “Ca. Purcelliella pentastirinorum” is a more recent endosymbiotic acquisition. Hawaiian cixiid planthoppers occupy diverse habitats including lava tube caves and shrubby surface landscapes, which offer different nutritional resources and environmental constraints. Genomic studies have focused on understanding the nutritional provisioning roles of cixiid endosymbionts more broadly, yet it is still unclear how selection pressures on endosymbiont genes might differ between cixiid host species inhabiting such diverse landscapes, or how variation in selection might impact symbiont evolution. In this study, we sequenced the genomes of Sulcia, Vidania, and Purcelliella isolated from both surface and cave-adapted planthopper hosts from the genus Oliarus. We found that nutritional biosynthesis genes were conserved in Sulcia and Vidania genomes in inter- and intra-host species comparisons. In contrast, Purcelliella genomes retain different essential nutritional biosynthesis genes between surface- and cave-adapted planthopper species. Finally, we see the variation in selection pressures on symbiont genes both within and between host species, suggesting that strong coevolution between host and endosymbiont is associated with different patterns of molecular evolution on a fine scale that may be associated with the host diet.

     
    more » « less
  2. Abstract

    Auchenorrhynchan insects (Hemiptera) generally depend on two bacterial symbionts for nutrition. These bacteria experience extreme genome reduction and loss of essential cell functions that require direct host support, or the replacement of failing symbionts with more capable ones. However, it remains unclear how hosts adapt to integrate symbionts into their systems, particularly when they are replaced. Here, we comparatively investigated the evolution of host-support mechanisms in the glassy-winged sharpshooter, Homalodisca vitripennis (GWSS), and the aster leafhopper, Macrosteles quadrilineatus (ALF). ALF harbors the ancestral co-symbionts of the Auchenorrhyncha that have tiny genomes, Sulcia (190 kb) and Nasuia (112 kb). In GWSS, Sulcia retains an expanded genome (245 kb), but Nasuia was replaced by the more capable Baumannia (686 kb). To support their symbionts, GWSS and ALF have evolved novel mechanisms via horizontal gene transfer, gene duplication, and co-option of mitochondrial support genes. However, GWSS has fewer support systems targeting essential bacterial processes. In particular, although both hosts use ancestral mechanisms to support Sulcia, GWSS does not encode all of the same support genes required to sustain Sulcia-ALF or Nasuia. Moreover, GWSS support of Baumannia is far more limited and tailored to its expanded capabilities. Our results demonstrate how symbiont replacements shape host genomes and the co-evolutionary process.

     
    more » « less
  3. Abstract

    Leafhoppers comprise over 20,000 plant‐sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts,SulciaandNasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal‐level assembly of the aster leafhopper's genome (ALF;Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers,Nephotettix cincticeps,Homalodisca vitripennis, andEmpoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont,Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with bothSulciaand its ancient partner,Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support ofSulciaandNasuiaare only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non‐symbiotic functions are conserved across all species. The high‐quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.

     
    more » « less
  4. Abstract

    Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia,Sulcia, andOphiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota.

     
    more » « less
  5. Abstract

    Anaerobic gut fungi (AGF,Neocallimastigomycota) reside in the alimentary tract of herbivores. While their presence in mammals is well documented, evidence for their occurrence in non-mammalian hosts is currently sparse. Culture-independent surveys of AGF in tortoises identified a unique community, with three novel deep-branching genera representing >90% of sequences in most samples. Representatives of all genera were successfully isolated under strict anaerobic conditions. Transcriptomics-enabled phylogenomic and molecular dating analyses indicated an ancient, deep-branching position in the AGF tree for these genera, with an evolutionary divergence time estimate of 104-112 million years ago (Mya). Such estimates push the establishment of animal-Neocallimastigomycotasymbiosis from the late to the early Cretaceous. Further, tortoise-associated isolates (T-AGF) exhibited limited capacity for plant polysaccharides metabolism and lacked genes encoding several carbohydrate-active enzyme (CAZyme) families. Finally, we demonstrate that the observed curtailed degradation capacities and reduced CAZyme repertoire is driven by the paucity of horizontal gene transfer (HGT) in T-AGF genomes, compared to their mammalian counterparts. This reduced capacity was reflected in an altered cellulosomal production capacity in T-AGF. Our findings provide insights into the phylogenetic diversity, ecological distribution, evolutionary history, evolution of fungal-host nutritional symbiosis, and dynamics of genes acquisition inNeocallimastigomycota.

     
    more » « less