skip to main content


Title: Automated Pitch Convergence Improves Learning in a Social, Teachable Robot for Middle School Mathematics
Pedagogical agents have the potential to provide not only cognitive support to learners but socio-emotional support through social behavior. Socioemotional support can be a critical element to a learner’s success, influencing their self-efficacy and motivation. Several social behaviors have been explored with pedagogical agents including facial expressions, movement, and social dialogue; social dialogue has especially been shown to positively influence interactions. In this work, we explore the role of paraverbal social behavior or social behavior in the form of paraverbal cues such as tone of voice and intensity. To do this, we focus on the phenomenon of entrainment, where individuals adapt their paraverbal features of speech to one another. Paraverbal entrainment in human-human studies has been found to be correlated with rapport and learning. In a study with 72 middle school students, we evaluate the effects of entrainment with a teachable robot, a pedagogical agent that learners teach how to solve ratio problems. We explore how a teachable robot which entrains and introduces social dialogue influences rapport and learning; we compare with two baseline conditions: a social condition, in which the robot speaks socially, and a non-social condition, in which the robot neither entrains nor speaks socially. We find that a robot that does entrain and speaks socially results in significantly more learning.  more » « less
Award ID(s):
1637809
NSF-PAR ID:
10076638
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Artificial Intelligence in Education
Page Range / eLocation ID:
282-296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teachable agents are pedagogical agents that employ the ‘learning-by-teaching’ strategy, which facilitates learning by encouraging students to construct explanations, reflect on misconceptions, and elaborate on what they know. Teachable agents present unique opportunities to maximize the benefits of a ‘learning-by-teaching’ experience. For example, teachable agents can provide socio-emotional support to learners, influencing learner self-efficacy and motivation, and increasing learning. Prior work has found that a teachable agent which engages learners socially through social dialogue and paraverbal adaptation on pitch can have positive effects on rapport and learning. In this work, we introduce Emma, a teachable robotic agent that can speak socially and adapt on both pitch and loudness. Based on the phenomenon of entrainment, multi-feature adaptation on tone and loudness has been found in human-human interactions to be highly correlated to learning and social engagement. In a study with 48 middle school participants, we performed a novel exploration of how multi-feature adaptation can influence learner rapport and learning as an independent social behavior and combined with social dialogue. We found significantly more rapport for Emma when the robot both adapted and spoke socially than when Emma only adapted and indications of a similar trend for learning. Additionally, it appears that an individual’s initial comfort level with robots may influence how they respond to such behavior, suggesting that for individuals who are more comfortable interacting with robots, social behavior may have a more positive influence. 
    more » « less
  2. Teachable agents are pedagogical agents that employ the 'learning-by-teaching' strategy, which facilitates learning by encouraging students to construct explanations, reflect on misconceptions, and elaborate on what they know. Teachable agents present unique opportunities to maximize the benefits of a 'learning-by-teaching' experience. For example, teachable agents can provide socio-emotional support to learners, influencing learner self-efficacy and motivation, and increasing learning. Prior work has found that a teachable agent which engages learners socially through social dialogue and paraverbal adaptation on pitch can have positive effects on rapport and learning. In this work, we introduce Emma, a teachable robotic agent that can speak socially and adapt on both pitch and loudness. Based on the phenomenon of entrainment, multi-feature adaptation on tone and loudness has been found in human-human interactions to be highly correlated to learning and social engagement. In a study with 48 middle school participants, we performed a novel exploration of how multi-feature adaptation can influence learner rapport and learning as an independent social behavior and combined with social dialogue. We found significantly more rapport for Emma when the robot both adapted and spoke socially than when Emma only adapted and indications of a similar trend for learning. Additionally, it appears that an individual’s initial comfort level with robots may influence how they respond to such behavior, suggesting that for individuals who are more comfortable interacting with robots, social behavior may have a more positive influence. 
    more » « less
  3. As dialogue systems become more prevalent in the form of personalized assistants, there is an increasingly important role for systems which can socially engage the user by influencing social factors like rapport. For example, learning companions enhance learning through socio-motivational support and are more successful when users feel rapport. In this work, I explore social engagement in dialogue systems in terms of acoustic-prosodic entrainment; entrainment is a phenomenon where over the course of a conversation, speakers adapt their acoustic-prosodic features, becoming more similar in their pitch, intensity, or speaking rate. Correlated with rapport and task success, entrainment plays a significant role in how individuals connect; a system which can entrain has potential to improve social engagement by enhancing these factors. As a result of this work, I introduce a dialogue system which can entrain and investigate its effects on social factors like rapport. 
    more » « less
  4. Speakers build rapport in the process of aligning conversational behaviors with each other. Rapport engendered with a teachable agent while instructing domain material has been shown to promote learning. Past work on lexical alignment in the field of education suffers from limitations in both the measures used to quantify alignment and the types of interactions in which alignment with agents has been studied. In this paper, we apply alignment measures based on a data-driven notion of shared expressions (possibly composed of multiple words) and compare alignment in one-on-one human-robot (H-R) interactions with the H-R portions of collaborative human-human-robot (H-H-R) interactions. We find that students in the H-R setting align with a teachable robot more than in the H-H-R setting and that the relationship between lexical alignment and rapport is more complex than what is predicted by previous theoretical and empirical work. 
    more » « less
  5. null (Ed.)
    Today’s classrooms are remarkably different from those of yesteryear. In place of individual students responding to the teacher from neat rows of desks, one more typically finds students working in groups on projects, with a teacher circulating among groups. AI applications in learning have been slow to catch up, with most available technologies focusing on personalizing or adapting instruction to learners as isolated individuals. Meanwhile, an established science of Computer Supported Collaborative Learning has come to prominence, with clear implications for how collaborative learning could best be supported. In this contribution, I will consider how intelligence augmentation could evolve to support collaborative learning as well as three signature challenges of this work that could drive AI forward. In conceptualizing collaborative learning, Kirschner and Erkens (2013) provide a useful 3x3 framework in which there are three aspects of learning (cognitive, social and motivational), three levels (community, group/team, and individual) and three kinds of pedagogical supports (discourse-oriented, representation-oriented, and process-oriented). As they engage in this multiply complex space, teachers and learners are both learning to collaborate and collaborating to learn. Further, questions of equity arise as we consider who is able to participate and in which ways. Overall, this analysis helps us see the complexity of today’s classrooms and within this complexity, the opportunities for augmentation or “assistance to become important and even essential. An overarching design concept has emerged in the past 5 years in response to this complexity, the idea of intelligent augmentation for “orchestrating” classrooms (Dillenbourg, et al, 2013). As a metaphor, orchestration can suggest the need for a coordinated performance among many agents who are each playing different roles or voicing different ideas. Practically speaking, orchestration suggests that “intelligence augmentation” could help many smaller things go well, and in doing so, could enable the overall intention of the learning experience to succeed. Those smaller things could include helping the teacher stay aware of students or groups who need attention, supporting formation of groups or transitions from one activity to the next, facilitating productive social interactions in groups, suggesting learning resources that would support teamwork, and more. A recent panel of AI experts identified orchestration as an overarching concept that is an important focus for near-term research and development for intelligence augmentation (Roschelle, Lester & Fusco, 2020). Tackling this challenging area of collaborative learning could also be beneficial for advancing AI technologies overall. Building AI agents that better understand the social context of human activities has broad importance, as does designing AI agents that can appropriately interact within teamwork. Collaborative learning has trajectory over time, and designing AI systems that support teams not just with a short term recommendation or suggestion but in long-term developmental processes is important. Further, classrooms that are engaged in collaborative learning could become very interesting hybrid environments, with multiple human and AI agents present at once and addressing dual outcome goals of learning to collaborate and collaborating to learn; addressing a hybrid environment like this could lead to developing AI systems that more robustly help many types of realistic human activity. In conclusion, the opportunity to make a societal impact by attending to collaborative learning, the availability of growing science of computer-supported collaborative learning and the need to push new boundaries in AI together suggest collaborative learning as a challenge worth tackling in coming years. 
    more » « less