The growing applications of the rare earth elements (REE) to the high-tech and green technology industry has led to an increased interest in the thermodynamic behavior of REE minerals and their aqueous complexes within the geochemical community. The REE minerology and rock chemistry of REE deposits can display significant variations during hydrothermal overprint 1,2 . Monazite (CePO 4 ) is a common mineral in these deposits and, in several cases, can be attributed to hydrothermal mineralization processes. The giant REE deposit in the Bayan Obo carbonatite 3 and the IOA deposit in Pea Ridge 4,5 contain monazite displaying significant compositional and textural variations that may provide useful vectors of fluid-rock interaction and ore deposition processes. To quantify the meaning of these variations using thermodynamic modelling will require a robust thermodynamic dataset for REE minerals and their aqueous complexes 6 . In this study, a series of hydrothermal batch solubility experiments have been conducted using LaPO 4 , PrPO 4 , NdPO 4 and EuPO 4 to assess the compatibility of available calorimetric data of these minerals and the thermodynamic data of the aqueous REE species. Additional calorimetric and XRD measurements were carried out to determine the thermodynamic properties of a series of monazite solid solutions. Solubility experiments were carried out in aqueous HClO 4 -H 3 PO 4 -bearing solutions at temperatures between 100 and 250 °C at saturated water vapor pressure. The equilibrium constants (K s0 ) determined for each endmember was then evaluated as a function of temperature and extrapolated to standard conditions of 25 °C and 1 bar. The results indicate significant differences in retrieved solubilities in comparison to the available literature data. We will demonstrate the impact of this new thermodynamic data by analyzing the results of several batch system equilibrium simulations using the GEMS code package (http://gems.web.psi.ch) and the MINES thermodynamic database (http://tdb.mines.edu). Our current and future thermodynamic data will be implemented in this thermodynamic framework and allow for the more accurate prediction of the hydrothermal behavior of REE in mineral deposits. 
                        more » 
                        « less   
                    
                            
                            Fingerprinting the Hydrothermal Mobility of Rare Earth Elements (REEs) in Ore Deposits from the Stability of Monazite-(Ce)
                        
                    
    
            Societal demand for critical metals used in the high-tech and green industries has led to an increased interest in REEs associated with ore deposits. Hydrothermal mineralization of monazite (CePO4) in various REE deposits can display significant variations in REE mineralogy and rock chemistry. Monazite displays textural and REE compositional variations, such as those observed in the giant Bayan Obo REE deposit in China and in the Pea Ridge iron-oxide-apatite (IOA) deposit in Missouri. The coupling of compositional variations of monazite with thermodynamic modeling of fluid-rock interaction processes may provide a useful vectoring tool in these ore deposits. However, interpreting these geochemical fingerprints requires building an internally consistent thermodynamic dataset for REE minerals and their relevant aqueous complexes. In this study, a series of hydrothermal solubility experiments were carried out using synthetic monazite crystals (i.e., LaPO4, PrPO4, NdPO4, and EuPO4) to assess the consistency of reported mineral calorimetric data and the thermodynamic data of the aqueous REE complexes. The solubility experiments were conducted in aqueous HClO4-H3PO4–bearing solutions at temperatures between 100° and 250°C and at saturated water vapor pressure. Equilibrium constants (Ks0) for the dissolution reaction of monazite end members were retrieved as a function of temperature and extrapolated to standard conditions of 25°C and 1 bar. Results indicate significant differences between the new solubility data and those reported in the literature. We demonstrate the impact of these new thermodynamic data in a series of fluid-rock interaction models using the GEMS code package (http://gems.web.psi.ch) and the MINES thermodynamic database (http://tdb.mines.edu). The simulated monazite stability can be correlated to field observations and allows for the prediction of the behavior of REE in hydrothermal fluids and their association to alteration observed in ore deposits. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10076700
- Date Published:
- Journal Name:
- SEG Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            CePO4 and YPO4 are major components in monazite and xenotime, respectively, which are common hydrothermal phases in REE mineral deposits. Both minerals also occur as secondary minerals in iron-oxide-apatite deposits [1,2], and as accessory phases in high-grade metamorphic rocks where they display varying degrees of metasomatism. Studying the cause of their compositional variations using thermodynamic modeling may provide geochemical signals for interpreting P- T-x of crustal fluid-rock interaction. The thermodynamic properties of monazite and xenotime have been determined using several calorimetric methods [3], but only a few solubility studies have been undertaken, which test the reliability of both the calorimetric data and thermodynamic properties of associated REE aqueous species [4]. Combining available calorimetric data with the REE aqueous species from Haas et al. [5], implemented in the Supcrt92 database [6], yields several orders of magnitude differences when compared with our solubility measurements. To reconcile these discrepancies, we have used the GEMS code package [7,8] and GEMSFITS [9] for parameter optimization, and re- evaluated the standard Gibbs energies for aqueous REE species, while maintaining consistency with available calorimetric measurement of the REE phosphates. This study points to a need to revise the thermodynamic properties of the REE hydroxyl species, which will have an impact on the calculated solubilities of the REE phosphates and our understanding of the mobility of REE in hydrothermal fluids. Our new experimental data will be implemented in the MINES thermodynamic database (http:// tdb.mines.edu) [10] for modeling the chemistry of crustal fluid-rock equilibria.more » « less
- 
            Monazite-(Ce) and xenotime-(Y) occur as secondary minerals in iron-oxide-apatite (IOA) deposits, and their stability and composition are important indicators of timing and conditions of metasomatism. Both of these minerals occur as replacement of apatite and display slight but important variations in light (e.g. La, Ce, Pr, Nd, etc.) and heavy (e.g. Y, Er, Dy, Yb, etc.) REE concentrations [1,2]. The causes for these chemical variations can be quantified by combining thermodynamic modeling with field observations. Major challenges for determining the stability of these minerals in hydrothermal solutions are the underlying models for calculating the thermodynamic properties of REE-bearing mineral solid solutions and aqueous species as a function of temperature and pressure. The thermodynamic properties of monazite and xenotime have been determined using several calorimetric methods [3], but only a few hydrothermal solubility studies have been undertaken, which test the reliability and compatibility of both the calorimetric data and thermodynamic properties of associated REE aqueous species [4,5]. Here, we evaluate the conditions of REE metasomatism in the Pea Ridge IOA-REE deposit in Missouri, and combine newly available experimental solubility data to simulate the speciation of LREE vs. HREE, and the partitioning of REE as a function of varying fluid compositions and temperatures. Our new experimental data will be implemented in the MINES thermodynamic database (http:// tdb.mines.edu) for modeling the chemistry of crustal fluid-rock equilibria [6]. [1] Harlov et al. (2016), Econ. Geol. 111, 1963-1984;[2] Hofstra et al. (2016), Econ. Geol. 111, 1985-2016; [3] Navrotsky et al. (2015), J. Chem. Thermodyn. 88, 126-141; [4] Gysi et al. (2015), Chem. Geol. 83-95; [5] Gysi et al. (2018), Geochim. Cosmochim. Acta 242, 143-164; [6] Gysi (2017), Pure and Appl. Chem. 89, 581-596.more » « less
- 
            Monazite is a light rare earth element (REE) phosphate found in REE mineral deposits, such as those formed in (per)alkaline and carbonatite magmatic-hydrothermal systems, where it occurs in association to the development of alteration zones and hydrothermal veins. Although it has been recognized that monazite may undergo replacement by coupled dissolution-precipitation processes, currently there is no model describing the compositional REE variations in monazite resulting from direct interaction with or precipitation from hydrothermal fluids. To develop such a model requires quantification of the thermodynamic properties of the aqueous REE species and the properties of the monazite endmembers and their solid solutions. The thermodynamic properties of monazite endmembers have been determined previously using calorimetric methods and low temperature solubility studies, but only a few solubility studies have been conducted at >100 °C. In this study, the solubility products (logKs0) of LaPO4, PrPO4, NdPO4, and EuPO4 monazite endmembers have been measured at temperatures between 100 and 250 °C and saturated water vapor pressure. The solubility products are reported with an uncertainty of ±0.2 (95% confidence) according to the reaction, REEPO4(s) = REE3+ + PO43−. (see table in manuscript) The REE phosphates display a retrograde solubility, with the measured Ks0 values varying several orders of magnitude over the experimental temperature range. Discrepancies were observed between the experimental solubility products and the calculated values resulting from combining calorimetric data of monazite with the properties of the aqueous REE3+ and PO43− species available in the literature. The differences between the calculated and measured standard Gibbs energy of reaction (ΔrG0) for PrPO4, NdPO4, and EuPO4 increased with higher temperatures (up to 15 kJ mol−1 at 250 °C), whereas for LaPO4 these differences increased at lower temperatures (up to 8 kJ mol−1 at 100 °C). To reconcile these discrepancies, the standard enthalpy of formation (ΔfH0) of monazite was optimized by fitting the experimental solubility data and extrapolating these fits to reference conditions of 25 °C and 1 bar. The optimized thermodynamic data provide the first internally consistent dataset for the solubility of all the monazite endmembers, and can be used to model REE partitioning between monazite and hydrothermal fluids at >100 °C.more » « less
- 
            Rare earth element (REE) deposits are commonly associated with carbonatites and (per)alkaline rocks where hydrothermal magmatic fluids can play a significant role in REE mobilization and deposition [1]. Thermodynamic modeling permits predicting the evolution of ore-forming fluids and can be used to test different controls on hydrothermal REE mobility including temperature, pressure, the solubility of REE minerals, aqueous REE speciation and pH evolution associated with fluid-rock interaction. Previous modeling studies either focused on REE fluoride/chloride complexation in acidic aqueous fluids [2] or near neutral/alkaline fluids associated with calcite vein formation [3]. Such models were also applied to interpret field observations in REE deposits Bayan Obo in China and Bear Lodge in Wyoming [3,4]. Recent hydrothermal calcite-fluid REE partitioning experiments provide new data to simulate the solubility of REE in calcite, REE carbonates/fluorocarbonates at high temperatures [5, 6]. We studied the competing effects controlling the mobility of REE in hydrothermal fluids between 100 and 400 °C at 500 bar. Speciation calculations were carried out in the Ca-F-CO2-Na-Cl-H2O system using the GEMS code package [7]. The properties of minerals and aqueous species were taken from the MINES thermodynamic database [3,5]. The Gallinas Mountains hydrothermal REE deposit in New Mexico was used as a field analogue to compare our models with the formation of calcite-fluorite veins hosting bastnäsite. Previous fluid inclusion studies hypothesized that the REE were transported as fluoride complexes [8] but more recent modeling studies have shown that fluoride essentially acts as a depositing ligand [2]. Here we show more detailed simulations predicting the stability of fluorite, calcite and REE minerals relevant to ore-forming processes in carbonatites and alkaline systems. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Migdisov and Williams-Jones (2014), Mineral. Deposita 49, 987-997. [3] Perry and Gysi (2018), Geofluids; [4] Liu et al. (2020), Minerals 10, 495; [5] Perry and Gysi (2020), Geochim. Cosmochim. Acta 286, 177-197; [6] Gysi and Williams-Jones (2015) Chem. Geol. 392, 87-101;[7] Kulik et al. (2013), Computat. Geosci. 17, 1-24; [8] Williams-Jones et al. (2000), Econ. Geol. 95, 327-341more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    