skip to main content


Title: Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers
Award ID(s):
1664710
NSF-PAR ID:
10076813
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
26
Issue:
21
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 27441
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The vast chemical space of emerging semiconductors, like metal halide perovskites, and their varied requirements for semiconductor applications have rendered trial-and-error environmentally unsustainable. In this work, we demonstrate RoboMapper, a materials acceleration platform (MAP), that achieves 10-fold research acceleration by formulating and palletizing semiconductors on a chip, thereby allowing high-throughput (HT) measurements to generate quantitative structure-property relationships (QSPRs) considerably more efficiently and sustainably. We leverage the RoboMapper to construct QSPR maps for the mixed ion FA 1-y Cs y Pb(I 1-x Br x ) 3 halide perovskite in terms of structure, bandgap, and photostability with respect to its composition. We identify wide-bandgap alloys suitable for perovskite-Si hybrid tandem solar cells exhibiting a pure cubic perovskite phase with favorable defect chemistry while achieving superior stability at the target bandgap of 1.7 eV. RoboMapper’s palletization strategy reduces environmental impacts of data generation in materials research by more than an order of magnitude, paving the way for sustainable data-driven materials research. 
    more » « less
  2. null (Ed.)
    A line defect with metallic characteristics has been found in optically transparent BaSnO 3 perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect. The electronic structure of the line defect probed in STEM with electron energy-loss spectroscopy was supported by ab initio theory, which indicates the presence of Fermi level–crossing electronic bands that originate from defect core atoms. These metallic line defects also act as electron sinks attracting additional negative charges in these wide-bandgap BaSnO 3 films. 
    more » « less