skip to main content


Title: Structure and role for active site lid of lactate monooxygenase from Mycobacterium smegmatis
Abstract Broad statement of impact

This first crystal structure of the FMN‐dependent α‐hydroxy acid oxidase family member lactate monooxygenase (LMO) reveals it has a uniquely large active site lid that we hypothesize is stable enough to explain the slow dissociation of pyruvate that leads to its “coupled” oxidation of lactate and O2to produce acetate, carbon dioxide, and water. Also, the relatively widespread distribution of putative LMOs supports their importance and provides new motivation for their further study.

 
more » « less
NSF-PAR ID:
10076845
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Volume:
28
Issue:
1
ISSN:
0961-8368
Page Range / eLocation ID:
p. 135-149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The crystal structure of the NADH:quinone oxidoreductase PA1024 has been solved in complex with NAD+to 2.2 Å resolution. The nicotinamide C4 is 3.6 Å from the FMN N5 atom, with a suitable orientation for facile hydride transfer. NAD+binds in a folded conformation at the interface of the TIM‐barrel domain and the extended domain of the enzyme. Comparison of the enzyme‐NAD+structure with that of the ligand‐free enzyme revealed a different conformation of a short loop (75–86) that is part of the NAD+‐binding pocket. P78, P82, and P84 provide internal rigidity to the loop, whereas Q80 serves as an active site latch that secures the NAD+within the binding pocket. An interrupted helix consisting of two α‐helices connected by a small three‐residue loop binds the pyrophosphate moiety of NAD+. The adenine moiety of NAD+appears to π–π stack with Y261. Steric constraints between the adenosine ribose of NAD+, P78, and Q80, control the strict specificity of the enzyme for NADH. Charged residues do not play a role in the specificity of PA1024 for the NADH substrate.

     
    more » « less
  2. Particulate methane monooxygenase (pMMO), a membrane-bound enzyme having three subunits (α, β, and γ) and copper-containing centers, is found in most of the methanotrophs that selectively catalyze the oxidation of methane into methanol. Active sites in the pMMO of Methylosinus trichosporium OB3b were determined by docking the modeled structure with ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene. The docking energy between the modeled pMMO structure and ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene was −5.2, −5.7, −4.2, and −3.8 kcal/mol, respectively, suggesting the existence of more than one active site within the monomeric subunits due to the presence of multiple binding sites within the pMMO monomer. The evaluation of tunnels and cavities of the active sites and the docking results showed that each active site is specific to the radius of the substrate. To increase the catalysis rates of methane in the pMMO of M. trichosporium OB3b, selected amino acid residues interacting at the binding site of ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene were mutated. Based on screening the strain energy, docking energy, and physiochemical properties, five mutants were downselected, B:Leu31Ser, B:Phe96Gly, B:Phe92Thr, B:Trp106Ala, and B:Tyr110Phe, which showed the docking energy of −6.3, −6.7, −6.3, −6.5, and −6.5 kcal/mol, respectively, as compared to the wild type (−5.2 kcal/mol) with ethylbenzene. These results suggest that these five mutants would likely increase methane oxidation rates compared to wild-type pMMO. 
    more » « less
  3. Abstract

    Nitronate monooxygenase (NMO) is an FMN‐dependent enzyme that oxidizes the neurotoxin propionate 3‐nitronate (P3N) and represents the best‐known system for P3N detoxification in different organisms. The crystal structure of the first eukaryotic Class I NMO fromCyberlindnera saturnus(CsNMO) has been solved at 1.65 Å resolution and refined to an R‐factor of 14.0%. The three‐dimensional structures of yeastCsNMO and bacterialPaNMO are highly conserved with the exception of three additional loops on the surface in theCsNMO enzyme and differences in four active sites residues. A PEG molecule was identified in the structure and formed extensive interactions withCsNMO, suggesting a specific binding site; however, 8% PEG showed no significant effect on the enzyme activity. This new crystal structure of a eukaryotic NMO provides insight into the function of this class of enzymes.

     
    more » « less
  4. Summary

    Ethylenediaminetetraacetate (EDTA) is the most abundant organic pollutant in surface water because of its extensive usage and the recalcitrance of stable metal‐EDTA complexes. A few bacteria includingChelativorans sp.BNC1 can degrade EDTA with a monooxygenase to ethylenediaminediacetate (EDDA) and then use iminodiacetate oxidase (IdaA) to further degrade EDDA into ethylenediamine in a two‐step oxidation. To alleviate EDTA pollution into the environment, deciphering the mechanisms of the metabolizing enzymes is an imperative prerequisite for informed EDTA bioremediation. Although IdaA cannot oxidize glycine, the crystal structure of IdaA shows its tertiary and quaternary structures similar to those of glycine oxidases. All confirmed substrates, EDDA, ethylenediaminemonoacetate, iminodiacetate and sarcosine are secondary amines with at least one N‐acetyl group. Each substrate was bound at there‐side face of the isoalloxazine ring in a solvent‐connected cavity. The carboxyl group of the substrate was bound by Arg265and Arg307. The catalytic residue, Tyr250, is under the hydrogen bond network to facilitate its deprotonation acting as a general base, removing an acetate group of secondary amines as glyoxylate. Thus, IdaA is a secondary amine oxidase, and our findings improve understanding of molecular mechanism involved in the bioremediation of EDTA and the metabolism of secondary amines.

     
    more » « less
  5. Saccharomyces cerevisiae OYE 3 shares 80% sequence identity with the well-studied Saccharomyces pastorianus OYE 1; however, wild-type OYE 3 shows different stereoselectivities toward some alkene substrates. Site-saturation mutagenesis of Trp 116 in OYE 3 followed by substrate profiling showed that the mutations had relatively little effect, opposite to that observed previously for OYE 1. The X-ray crystal structures of unliganded and phenol-bound OYE 3 were solved to 1.8 and 1.9 Å resolution, respectively. Both structures were nearly identical to that of OYE 1, with only a single amino acid difference in the active site region (Ser 296 versus Phe 296, part of loop 6). Despite their essentially identical static X-ray structures, molecular dynamics (MD) simulations revealed that loop 6 conformations differed significantly in solution between OYE 3 and OYE 1. In OYE 3, loop 6 remained nearly as open as observed in the crystal structure; by contrast, loop 6 closed over the active site of OYE 1 by ca. 4 Å. Loop closure likely generates a greater number of active site protein contacts for substrate bound to OYE 1 as compared to OYE 3. These differences provide an explanation for the differing stereoselectivities of OYE 3 and OYE 1, despite their nearly identical X-ray crystal structures. 
    more » « less