skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization and effect of metal ions on the formation of the Thermus thermophilus Sco mixed disulfide intermediate
Abstract The Sco protein fromThermus thermophilushas previously been shown to perform a disulfide bond reduction in the CuAprotein fromT. thermophilus, which is a soluble protein engineered from subunit II of cytochromeba3oxidase that lacks the transmembrane helix. The native cysteines onTtSco andTtCuAwere mutated to serine residues to probe the reactivities of the individual cysteines. Conjugation of TNB to the remaining cysteine inTtCuAand subsequent release upon incubation with the complementaryTtSco protein demonstrated the formation of the mixed disulfide intermediate. The cysteine ofTtSco that attacks the disulfide bond in the targetTtCuAprotein was determined to beTtSco Cysteine 49. This cysteine is likely more reactive than Cysteine 53 due to a higher degree of solvent exposure. Removal of the metal binding histidine, His 139, does not change MDI formation. However, altering the arginine adjacent to the reactive cysteine in Sco (Arginine 48) does alter the formation of the MDI. Binding of Cu2+or Cu+toTtSco prior to reaction withTtCuAwas found to preclude formation of the mixed disulfide intermediate. These results shed light on a mechanism of disulfide bond reduction by theTtSco protein and may point to a possible role of metal binding in regulating the activity. ImportanceThe function of Sco is at the center of many studies. The disulfide bond reduction in CuAby Sco is investigated herein and the effect of metal ions on the ability to reduce and form a mixed disulfide intermediate are also probed.  more » « less
Award ID(s):
1726441
PAR ID:
10076846
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Volume:
27
Issue:
11
ISSN:
0961-8368
Page Range / eLocation ID:
p. 1942-1954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dinesh-Kumar, Savithramma P (Ed.)
    Small cysteine-rich antifungal peptides with multi-site modes of action (MoA) have potential for development as biofungicides. In particular, legumes of the inverted repeat-lacking clade express a large family of nodule-specific cysteine-rich (NCR) peptides that orchestrate differentiation of nitrogen-fixing bacteria into bacteroids. These NCRs can form two or three intramolecular disulfide bonds and a subset of these peptides with high cationicity exhibits antifungal activity. However, the importance of intramolecular disulfide pairing and MoA against fungal pathogens for most of these plant peptides remains to be elucidated. Our study focused on a highly cationic chickpea NCR13, which has a net charge of +8 and contains six cysteines capable of forming three disulfide bonds. NCR13 expression inPichia pastorisresulted in formation of two peptide folding variants, NCR13_PFV1 and NCR13_PFV2, that differed in the pairing of two out of three disulfide bonds despite having an identical amino acid sequence. The NMR structure of each PFV revealed a unique three-dimensional fold with the PFV1 structure being more compact but less dynamic. Surprisingly, PFV1 and PFV2 differed profoundly in the potency of antifungal activity against several fungal plant pathogens and their multi-faceted MoA. PFV1 showed significantly faster fungal cell-permeabilizing and cell entry capabilities as well as greater stability once inside the fungal cells. Additionally, PFV1 was more effective in binding fungal ribosomal RNA and inhibiting protein translationin vitro. Furthermore, when sprayed on pepper and tomato plants, PFV1 was more effective in reducing disease symptoms caused byBotrytis cinerea, causal agent of gray mold disease in fruits, vegetables, and flowers. In conclusion, our work highlights the significant impact of disulfide pairing on the antifungal activity and MoA of NCR13 and provides a structural framework for design of novel, potent antifungal peptides for agricultural use. 
    more » « less
  2. Abstract Bacteria contain conserved mechanisms to control the intracellular levels of metal ions. Metalloregulatory transcription factors bind metal cations and play a central role in regulating gene expression of metal transporters. Often, these transcription factors regulate transcription by binding to a specific DNA sequence in the promoter region of target genes. Understanding the preferred DNA‐binding sequence for transcriptional regulators can help uncover novel gene targets and provide insight into the biological role of the transcription factor in the host organism. Here, we identify consensus DNA‐binding sequences and subsequent transcription regulatory networks for two metalloregulators from the ferric uptake regulator (FUR) and diphtheria toxin repressor (DtxR) superfamilies inThermus thermophilusHB8. By homology search, we classify the DtxR homolog as a manganese‐specific, MntR (TtMntR), and the FUR homolog as a peroxide‐sensing, PerR (TtPerR). Both transcription factors repress separate ZIP transporter genes in vivo, andTtPerR acts as a bifunctional transcription regulator by activating the expression of ferric and hemin transport systems. We showTtPerR andTtMntR bind DNA in the presence of manganese in vitro and in vivo; however,TtPerR is unable to bind DNA in the presence of iron, likely due to iron‐mediated histidine oxidation. Unlike canonical PerR homologs,TtPerR does not appear to contribute to peroxide detoxification. Instead, theTtPerR regulon and DNA binding sequence are more reminiscent of Fur or Mur homologs. Collectively, these results highlight the similarities and differences between two metalloregulatory superfamilies and underscore the interplay of manganese and iron in transcription factor regulation. 
    more » « less
  3. Abstract Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH. 
    more » « less
  4. Abstract Cupin dioxygenases such as salicylate 1,2‐dioxygense (SDO) perform aromatic C−C bond scission via a 3‐His motif tethered iron cofactor. Here, transient kinetics measurements are used to monitor the catalytic cycle of SDO by using a nitro‐substituted substrate analog, 3‐nitrogentisate. Compared to the natural substrate, the nitro group reduces the enzymatickcatby 500‐fold, thereby facilitating the detection and kinetic characterization of reaction intermediates. Sums and products of reciprocal relaxation times derived from kinetic measurements were found to be linearly dependent on O2concentration, suggesting reversible formation of two distinct intermediates. Dioxygen binding to the metal cofactor takes place with a forward rate of 5.9×103 M−1 s−1: two orders of magnitude slower than other comparable ring‐cleaving dioxygenses. Optical chromophore of the first intermediate is distinct from thein situgenerated SDO Fe(III)−O2complex but closer to the enzyme‐substrate precursor. 
    more » « less
  5. Abstract The two‐fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene,1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C−C bond converts the central eight‐membered ring into a twisted core with two fused five‐membered rings. This C−C bond of 1.589(3)–1.606(6) Å falls into a single σ‐bond range and generates two perpendicular π‐surfaces with dihedral angles of 110.3(9)°–117.4(1)° in the1TR2−dianions. As a result, the highly contorted1TR2−ligand exhibits a “butterfly” shape and could provide different coordination sites for metal‐ion binding. The K‐induced reduction of1in THF affords a polymeric product with low solubility, namely [{K+(THF)}2(1TR2−)] (K2‐1TR2−). The use of a secondary ligand facilitates the isolation of discrete complexes with heavy alkali metals, [Rb+(18‐crown‐6)]2[1TR2−] (Rb2‐1TR2−) and [Cs+(18‐crown‐6)]2[1TR2−] (Cs2‐1TR2−). Both internal and external coordination are observed inK2‐1TR2−, while the bulky 18‐crown‐6 ligand only allows external metal binding inRb2‐1TR2−andCs2‐1TR2−. The reversibility of the two‐fold reduction and bond rearrangement is demonstrated by NMR spectroscopy. Computational analysis shows that the heavier alkali metals enable effective charge transfer from the1TR2−TBCOT dianion, however, the aromaticity of the polycyclic ligand remains largely unaffected. 
    more » « less