skip to main content


Title: Relation between blood pressure and pulse wave velocity for human arteries

Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens−Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressurePand PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula betweenPand PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.

 
more » « less
PAR ID:
10077304
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
44
ISSN:
0027-8424
Page Range / eLocation ID:
p. 11144-11149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wearable devices for continuous monitoring of arterial pulse waves have the potential to improve the diagnosis, prognosis, and management of cardiovascular diseases. These pulse wave signals are often affected by the contact pressure between the wearable device and the skin, limiting the accuracy and reliability of hemodynamic parameter quantification. Here, a continuous hemodynamic monitoring device that enables the simultaneous recording of dual‐channel bioimpedance and quantification of pulse wave velocity (PWV) and blood pressure (BP) is reported. The investigations demonstrate the effect of contact pressure on bioimpedance and PWV. The pulsatile bioimpedance magnitude reached its maximum when the contact pressure approximated the mean arterial pressure of the subject. PWV is employed to continuously quantify BP while maintaining comfortable contact pressure for prolonged wear. The mean absolute error and standard deviation of the error compared to the reference value are determined to be 0.1 ± 3.3 mmHg for systolic BP, 1.3 ± 3.7 mmHg for diastolic BP, and −0.4 ± 3.0 mmHg for mean arterial pressure when measurements are conducted in the lying down position. This research demonstrates the potential of wearable dual‐bioimpedance sensors with contact pressure guidance for reliable and continuous hemodynamic monitoring.

     
    more » « less
  2. Many individuals suffer from ailments such hypertension that require frequent health monitoring. Unfortunately, current technology does not possess the ability for unobtrusive, continuous monitoring. This paper proposes estimation of pulse pressure based on pulse transient time determined from one non-contact, and one contact sensor: Doppler radar for non-contact detection of heart beat, and piezoelectric finger pulse sensor. The time delay between heart beat and finger pulse was determined using MATLAB software, and pulse wave velocity (PWV) was calculated. Finally, subjects' pulse pressure estimated using PWV was found to be in good agreement with pulse pressure measured using an off the shelf sphygmomanometer by reading and taking difference of systolic and diastolic blood pressure. 
    more » « less
  3. Abstract

    Ultrasound is a safe, noninvasive diagnostic technique used to measure internal structures such as blood vessels and the velocity of blood flow in the human body. The ability to continuously measure blood flow in major cerebral arteries would enable the early detection of medical problems such as stroke. However, current ultrasound technology consists of rigid, hand-held probes that are arduous to use, sensitive to movement, and are primarily designed for intermittent, instead of continuous use. Here, we describe the design of a wearable ultrasound patch for continuously measuring blood flow velocity through the middle cerebral artery (MCA) that can be assessed from the temple region of the head. The wearable ultrasound patch is composed of an array of piezoelectric elements that are wired together using flexible electrical conductors and encapsulated in an elastic substrate. To improve ultrasound energy transfer, a soft and conformal composite matching layer is introduced. The matching layer consists of gallium-based liquid metal (LM) microdroplets dispersed in a silicone elastomer. The acoustic impedance of the matching layer can be tuned by varying the volume loading of LM. The wearable ultrasound patch will provide new opportunities to continuously measure blood flow velocity and ultimately enable early detection of medical problems such as stroke.

     
    more » « less
  4. Abstract

    Continuous monitoring of arterial blood pressure is clinically important for diagnosing and managing cardiovascular diseases. Soft electronic devices with skin‐like properties show promise in various applications, including the human‐machine interface, the Internet of Things, and health monitoring. Herein, the use of add‐on soft electronic interfaces addresses the connection challenges between soft electrodes and rigid data acquisition circuitry for bioimpedance monitoring of cardiac signals, including heart rate and cuffless blood pressure is reported. Nanocomposite films in add‐on electrodes provide robust electrical and mechanical contact with the skin and the rigid circuitry. Bioimpedance sensors composed of add‐on electrodes offer continuous blood pressure monitoring with high accuracy. Specifically, the bioimpedance collected with add‐on nanocomposite electrodes shows a signal‐to‐noise ratio of 37.0 dB, higher than the ratio of 25.9 dB obtained with standard silver/silver chloride (Ag/AgCl) gel electrodes. Although the sample set is low, the continuously measured systolic and diastolic blood pressure offer accuracy of −2.0 ± 6.3 mmHg and −4.3 ± 3.9 mmHg, respectively, confirming the grade A performance based on the IEEE standard. These results show promise in bioimpedance measurements with add‐on soft electrodes for cuffless blood pressure monitoring.

     
    more » « less
  5. Abstract

    It is well known that elasticity is a key physical property in the determination of the structure and composition of the Earth and provides critical information for the interpretation of seismic data. This study investigates the stress‐induced variation in elastic wave velocities, known as the acoustoelastic effect, in San Carlos olivine. A recently developed experimental ultrasonic acoustic system, the Directly Integrated Acoustic System Combined with Pressure Experiments (DIASCoPE), was used with the D‐DIA multi‐anvil apparatus to transmit ultrasonic sound waves and collect the reflections. We use the DIASCoPE to obtain longitudinal (P) and shear (S) elastic wave velocities from San Carlos olivine at pressures ranging from 3.2–10.5 GPa and temperatures from 450–950°C which we compare to the stress state in the D‐DIA derived from synchrotron X‐ray diffraction. We use elastic‐plastic self‐consistent (EPSC) numerical modeling to forward model X‐ray diffraction data collected in D‐DIA experiments to obtain the macroscopic stress on our sample. We can observe the relationship between the relative elastic wave velocity change (ΔV/V) and macroscopic stress to determine the acoustoelastic constants, and interpret our observations using the linearized first‐order equation based on the model proposed by Hughes and Kelly (1953),https://doi.org/10.1103/physrev.92.1145. This work supports the presence of the acoustoelastic effect in San Carlos olivine, which can be measured as a function of pressure and temperature. This study will aid in our understanding of the acoustoelastic effect and provide a new experimental technique to measure the stress state in elastically deformed geologic materials at high pressure conditions.

     
    more » « less