skip to main content


Title: Comparing optimal and empirical stomatal conductance models for application in Earth system models
Abstract

Earth system models (ESMs) rely on the calculation of canopy conductance in land surface models (LSMs) to quantify the partitioning of land surface energy, water, andCO2fluxes. This is achieved by scaling stomatal conductance,gw, determined from physiological models developed for leaves. Traditionally, models forgwhave been semi‐empirical, combining physiological functions with empirically determined calibration constants. More recently, optimization theory has been applied to modelgwinLSMs under the premise that it has a stronger grounding in physiological theory and might ultimately lead to improved predictive accuracy. However, this premise has not been thoroughly tested. Using original field data from contrasting forest systems, we compare a widely used empirical type and a more recently developed optimization‐typegwmodel, termedBBandMED, respectively. Overall, we find no difference between the two models when used to simulategwfrom photosynthesis data, or leaf gas exchange from a coupled photosynthesis‐conductance model, or gross primary productivity and evapotranspiration for aFLUXNETtower site with theCLM5 communityLSM. Field measurements reveal that the key fitted parameters forBBandMED,g1Bandg1M,exhibit strong species specificity in magnitude and sensitivity toCO2, andCLM5 simulations reveal that failure to include this sensitivity can result in significant overestimates of evapotranspiration for high‐CO2scenarios. Further, we show thatg1Bandg1Mcan be determined from meanci/ca(ratio of leaf intercellular to ambientCO2concentration). Applying this relationship withci/cavalues derived from a leaf δ13C database, we obtain a global distribution ofg1Bandg1M, and these values correlate significantly with mean annual precipitation. This provides a new methodology for global parameterization of theBBandMEDmodels inLSMs, tied directly to leaf physiology but unconstrained by spatial boundaries separating designated biomes or plant functional types.

 
more » « less
NSF-PAR ID:
10077570
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
24
Issue:
12
ISSN:
1354-1013
Page Range / eLocation ID:
p. 5708-5723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Mesophyll conductance (gm) is the diffusion ofCO2from intercellular air spaces (IAS) to the first site of carboxylation in the mesophyll cells. In C3species,gmis influenced by diverse leaf structural and anatomical traits; however, little is known about traits affectinggmin C4species.

    To address this knowledge gap, we used online oxygen isotope discrimination measurements to estimategmand microscopy techniques to measure leaf structural and anatomical traits potentially related togmin 18 C4grasses.

    In this study,gmscaled positively with photosynthesis and intrinsic water‐use efficiency (TEi), but not with stomatal conductance. Also,gmwas not determined by a single trait but was positively correlated with adaxial stomatal densities (SDada), stomatal ratio (SR), mesophyll surface area exposed toIAS(Smes) and leaf thickness. However,gmwas not related to abaxial stomatal densities (SDaba) and mesophyll cell wall thickness (TCW).

    Our study suggests that greaterSDadaandSRincreasedgmby increasingSmesand creating additional parallel pathways forCO2diffusion inside mesophyll cells. Thus,SDada,SRandSmesare important determinants of C4gmand could be the target traits selected or modified for achieving greatergmandTEiin C4species.

     
    more » « less
  2. Abstract

    The rapid A‐Ciresponse (RACiR) technique alleviates limitations of measuring photosynthetic capacity by reducing the time needed to determine the maximum carboxylation rate (Vcmax) and electron transport rate (Jmax) in leaves. Photosynthetic capacity and its relationships with leaf development are important for understanding ecological and agricultural productivity; however, our current understanding is incomplete. Here, we show that RACiR can be used in previous generation gas exchange systems (i.e., the LI‐6400) and apply this method to rapidly investigate developmental gradients of photosynthetic capacity in poplar. We compared RACiR‐determined Vcmaxand Jmaxas well as respiration and stomatal conductance (gs) across four stages of leaf expansion inPopulus deltoidesand the poplar hybrid 717‐1B4 (Populus tremula × Populus alba). These physiological data were paired with leaf traits including nitrogen concentration, chlorophyll concentrations, and specific leaf area. Several traits displayed developmental trends that differed between the poplar species, demonstrating the utility of RACiR approaches to rapidly generate accurate measures of photosynthetic capacity. By using both new and old machines, we have shown how more investigators will be able to incorporate measurements of important photosynthetic traits in future studies and further our understanding of relationships between development and leaf‐level physiology.

     
    more » « less
  3. Abstract

    Wetlands play an important role in regulating the atmospheric carbon dioxide (CO2) concentrations and thus affecting the climate. However, there is still lack of quantitative evaluation of such a role across different wetland types, especially at the global scale. Here, we conducted a meta‐analysis to compare ecosystemCO2fluxes among various types of wetlands using a global database compiled from the literature. This database consists of 143 site‐years of eddy covariance data from 22 inland wetland and 21 coastal wetland sites across the globe. Coastal wetlands had higher annual gross primary productivity (GPP), ecosystem respiration (Re), and net ecosystem productivity (NEP) than inland wetlands. On a per unit area basis, coastal wetlands provided largeCO2sinks, while inland wetlands provided smallCO2sinks or were nearlyCO2neutral. The annualCO2sink strength was 93.15 and 208.37 g C m−2for inland and coastal wetlands, respectively. AnnualCO2fluxes were mainly regulated by mean annual temperature (MAT) and mean annual precipitation (MAP). For coastal and inland wetlands combined,MATandMAPexplained 71%, 54%, and 57% of the variations inGPP,Re, andNEP, respectively. TheCO2fluxes of wetlands were also related to leaf area index (LAI). TheCO2fluxes also varied with water table depth (WTD), although the effects ofWTDwere not statistically significant.NEPwas jointly determined byGPPandRefor both inland and coastal wetlands. However, theNEP/ReandNEP/GPPratios exhibited little variability for inland wetlands and decreased for coastal wetlands with increasing latitude. The contrasting ofCO2fluxes between inland and coastal wetlands globally can improve our understanding of the roles of wetlands in the global C cycle. Our results also have implications for informing wetland management and climate change policymaking, for example, the efforts being made by international organizations and enterprises to restore coastal wetlands for enhancing blue carbon sinks.

     
    more » « less
  4. Summary

    Given increasing water deficits across numerous ecosystems world‐wide, it is urgent to understand the sequence of failure of leaf function during dehydration.

    We assessed dehydration‐induced losses of rehydration capacity and maximum quantum yield of the photosystemII(Fv/Fm) in the leaves of 10 diverse angiosperm species, and tested when these occurred relative to turgor loss, declines of stomatal conductancegs, and hydraulic conductanceKleaf, including xylem and outside xylem pathways for the same study plants. We resolved the sequences of relative water content and leaf water potential Ψleafthresholds of functional impairment.

    On average, losses of leaf rehydration capacity occurred at dehydration beyond 50% declines ofgs,Kleafand turgor loss point. Losses ofFv/Fmoccurred after much stronger dehydration and were not recovered with leaf rehydration. Across species, tissue dehydration thresholds were intercorrelated, suggesting trait co‐selection. Thresholds for each type of functional decline were much less variable across species in terms of relative water content than Ψleaf.

    The stomatal and leaf hydraulic systems show early functional declines before cell integrity is lost. Substantial damage to the photochemical apparatus occurs at extreme dehydration, after complete stomatal closure, and seems to be irreversible.

     
    more » « less
  5. Abstract

    Cultivated crops are generally expected to have less abiotic stress tolerance than their wild relatives. However, this assumption is not well supported by empirical literature and may depend on the type of stress and how it is imposed, as well as the measure of tolerance being used. Here, we investigated whether wild and cultivated accessions ofHelianthus annuusdiffered in stress tolerance assessed as proportional decline in biomass due to drought and whether wild and cultivated accessions differed in trait responses to drought and trait associations with tolerance. In a greenhouse study,H. annuusaccessions in the two domestication classes (eight cultivated and eight wild accessions) received two treatments: a well‐watered control and a moderate drought implemented as a dry down followed by maintenance at a predetermined soil moisture level with automated irrigation. Treatments were imposed at the seedling stage, and plants were harvested after 2 weeks of treatment. The proportional biomass decline in response to drought was 24% for cultivatedH. annuusaccessions but was not significant for the wild accessions. Thus, using the metric of proportional biomass decline, the cultivated accessions had less drought tolerance. Among accessions, there was no tradeoff between drought tolerance and vigor assessed as biomass in the control treatment. In a multivariate analysis, wild and cultivated accessions did not differ from each other or in response to drought for a subset of morphological, physiological, and allocational traits. Analyzed individually, traits varied in response to drought in wild and/or cultivated accessions, including declines in specific leaf area, leaf theoretical maximum stomatal conductance (gsmax), and stomatal pore length, but there was no treatment response for stomatal density, succulence, or the ability to osmotically adjust. Focusing on traits associations with tolerance, plasticity in gsmaxwas the most interesting because its association with tolerance differed by domestication class (although the effects were relatively weak) and thus might contribute to lower tolerance of cultivated sunflower. OurH. annuusresults support the expectation that stress tolerance is lower in crops than wild relatives under some conditions. However, determining the key traits that underpin differences in moderate drought tolerance between wild and cultivatedH. annuusremains elusive.

     
    more » « less