skip to main content


Title: More than $1 billion needed annually to secure Africa’s protected areas with lions

Protected areas (PAs) play an important role in conserving biodiversity and providing ecosystem services, yet their effectiveness is undermined by funding shortfalls. Using lions (Panthera leo) as a proxy for PA health, we assessed available funding relative to budget requirements for PAs in Africa’s savannahs. We compiled a dataset of 2015 funding for 282 state-owned PAs with lions. We applied three methods to estimate the minimum funding required for effective conservation of lions, and calculated deficits. We estimated minimum required funding as $978/km2per year based on the cost of effectively managing lions in nine reserves by the African Parks Network; $1,271/km2based on modeled costs of managing lions at ≥50% carrying capacity across diverse conditions in 115 PAs; and $2,030/km2based on Packer et al.’s [Packer et al. (2013)Ecol Lett16:635–641] cost of managing lions in 22 unfenced PAs. PAs with lions require a total of $1.2 to $2.4 billion annually, or ∼$1,000 to 2,000/km2, yet received only $381 million annually, or a median of $200/km2. Ninety-six percent of range countries had funding deficits in at least one PA, with 88 to 94% of PAs with lions funded insufficiently. In funding-deficit PAs, available funding satisfied just 10 to 20% of PA requirements on average, and deficits total $0.9 to $2.1 billion. African governments and the international community need to increase the funding available for management by three to six times if PAs are to effectively conserve lions and other species and provide vital ecological and economic benefits to neighboring communities.

 
more » « less
NSF-PAR ID:
10077678
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
45
ISSN:
0027-8424
Page Range / eLocation ID:
p. E10788-E10796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the link between individual differences in science reasoning skills and mock jurors’ deliberation behavior; specifically, how much they talk about the scientific evidence presented in a complicated, ecologically valid case during deliberation. Consistent with our preregistered hypothesis, mock jurors strong in scientific reasoning discussed the scientific evidence more during deliberation than those with weaker science reasoning skills. Summary With increasing frequency, legal disputes involve complex scientific information (Faigman et al., 2014; Federal Judicial Center, 2011; National Research Council, 2009). Yet people often have trouble consuming scientific information effectively (McAuliff et al., 2009; National Science Board, 2014; Resnick et al., 2016). Individual differences in reasoning styles and skills can affect how people comprehend complex evidence (e.g., Hans, Kaye, Dann, Farley, Alberston, 2011; McAuliff & Kovera, 2008). Recently, scholars have highlighted the importance of studying group deliberation contexts as well as individual decision contexts (Salerno & Diamond, 2010; Kovera, 2017). If individual differences influence how jurors understand scientific evidence, it invites questions about how these individual differences may affect the way jurors discuss science during group deliberations. The purpose of the current study was to examine how individual differences in the way people process scientific information affects the extent to which jurors discuss scientific evidence during deliberations. Methods We preregistered the data collection plan, sample size, and hypotheses on the Open Science Framework. Jury-eligible community participants (303 jurors across 50 juries) from Phoenix, AZ (Mage=37.4, SD=16.9; 58.8% female; 51.5% White, 23.7% Latinx, 9.9% African-American, 4.3% Asian) were paid $55 for a 3-hour mock jury study. Participants completed a set of individual questionnaires related to science reasoning skills and attitudes toward science prior to watching a 45-minute mock armed-robbery trial. The trial included various pieces of evidence and testimony, including forensic experts testifying about mitochondrial DNA evidence (mtDNA; based on Hans et al. 2011 materials). Participants were then given 45 minutes to deliberate. The deliberations were video recorded and transcribed to text for analysis. We analyzed the deliberation content for discussions related to the scientific evidence presented during trial. We hypothesized that those with stronger scientific and numeric reasoning skills, higher need for cognition, and more positive views towards science would discuss scientific evidence more than their counterparts during deliberation. Measures We measured Attitudes Toward Science (ATS) with indices of scientific promise and scientific reservations (Hans et al., 2011; originally developed by the National Science Board, 2004; 2006). We used Drummond and Fischhoff’s (2015) Scientific Reasoning Scale (SRS) to measure scientific reasoning skills. Weller et al.’s (2012) Numeracy Scale (WNS) measured proficiency in reasoning with quantitative information. The NFC-Short Form (Cacioppo et al., 1984) measured need for cognition. Coding We identified verbal utterances related to the scientific evidence presented in court. For instance, references to DNA evidence in general (e.g. nuclear DNA being more conclusive than mtDNA), the database that was used to compare the DNA sample (e.g. the database size, how representative it was), exclusion rates (e.g. how many other people could not be excluded as a possible match), and the forensic DNA experts (e.g. how credible they were perceived). We used word count to operationalize the extent to which each juror discussed scientific information. First we calculated the total word count for each complete jury deliberation transcript. Based on the above coding scheme we determined the number of words each juror spent discussing scientific information. To compare across juries, we wanted to account for the differing length of deliberation; thus, we calculated each juror’s scientific deliberation word count as a proportion of their jury’s total word count. Results On average, jurors discussed the science for about 4% of their total deliberation (SD=4%, range 0-22%). We regressed proportion of the deliberation jurors spend discussing scientific information on the four individual difference measures (i.e., SRS, NFC, WNS, ATS). Using the adjusted R-squared, the measures significantly accounted for 5.5% of the variability in scientific information deliberation discussion, SE=0.04, F(4, 199)=3.93, p=0.004. When controlling for all other variables in the model, the Scientific Reasoning Scale was the only measure that remained significant, b=0.003, SE=0.001, t(203)=2.02, p=0.045. To analyze how much variability each measure accounted for, we performed a stepwise regression, with NFC entered at step 1, ATS entered at step 2, WNS entered at step 3, and SRS entered at step 4. At step 1, NFC accounted for 2.4% of the variability, F(1, 202)=5.95, p=0.02. At step 2, ATS did not significantly account for any additional variability. At step 3, WNS accounted for an additional 2.4% of variability, ΔF(1, 200)=5.02, p=0.03. Finally, at step 4, SRS significantly accounted for an additional 1.9% of variability in scientific information discussion, ΔF(1, 199)=4.06, p=0.045, total adjusted R-squared of 0.055. Discussion This study provides additional support for previous findings that scientific reasoning skills affect the way jurors comprehend and use scientific evidence. It expands on previous findings by suggesting that these individual differences also impact the way scientific evidence is discussed during juror deliberations. In addition, this study advances the literature by identifying Scientific Reasoning Skills as a potentially more robust explanatory individual differences variable than more well-studied constructs like Need for Cognition in jury research. Our next steps for this research, which we plan to present at AP-LS as part of this presentation, incudes further analysis of the deliberation content (e.g., not just the mention of, but the accuracy of the references to scientific evidence in discussion). We are currently coding this data with a software program called Noldus Observer XT, which will allow us to present more sophisticated results from this data during the presentation. Learning Objective: Participants will be able to describe how individual differences in scientific reasoning skills affect how much jurors discuss scientific evidence during deliberation. 
    more » « less
  2. The COVID-19 pandemic has dramatically altered family life in the United States. Over the long duration of the pandemic, parents had to adapt to shifting work conditions, virtual schooling, the closure of daycare facilities, and the stress of not only managing households without domestic and care supports but also worrying that family members may contract the novel coronavirus. Reports early in the pandemic suggest that these burdens have fallen disproportionately on mothers, creating concerns about the long-term implications of the pandemic for gender inequality and mothers’ well-being. Nevertheless, less is known about how parents’ engagement in domestic labor and paid work has changed throughout the pandemic, what factors may be driving these changes, and what the long-term consequences of the pandemic may be for the gendered division of labor and gender inequality more generally.

    The Study on U.S. Parents’ Divisions of Labor During COVID-19 (SPDLC) collects longitudinal survey data from partnered U.S. parents that can be used to assess changes in parents’ divisions of domestic labor, divisions of paid labor, and well-being throughout and after the COVID-19 pandemic. The goal of SPDLC is to understand both the short- and long-term impacts of the pandemic for the gendered division of labor, work-family issues, and broader patterns of gender inequality.

    Survey data for this study is collected using Prolifc (www.prolific.co), an opt-in online platform designed to facilitate scientific research. The sample is comprised U.S. adults who were residing with a romantic partner and at least one biological child (at the time of entry into the study). In each survey, parents answer questions about both themselves and their partners. Wave 1 of SPDLC was conducted in April 2020, and parents who participated in Wave 1 were asked about their division of labor both prior to (i.e., early March 2020) and one month after the pandemic began. Wave 2 of SPDLC was collected in November 2020. Parents who participated in Wave 1 were invited to participate again in Wave 2, and a new cohort of parents was also recruited to participate in the Wave 2 survey. Wave 3 of SPDLC was collected in October 2021. Parents who participated in either of the first two waves were invited to participate again in Wave 3, and another new cohort of parents was also recruited to participate in the Wave 3 survey. This research design (follow-up survey of panelists and new cross-section of parents at each wave) will continue through 2024, culminating in six waves of data spanning the period from March 2020 through October 2024. An estimated total of approximately 6,500 parents will be surveyed at least once throughout the duration of the study.

    SPDLC data will be released to the public two years after data is collected; Waves 1 and 2 are currently publicly available. Wave 3 will be publicly available in October 2023, with subsequent waves becoming available yearly. Data will be available to download in both SPSS (.sav) and Stata (.dta) formats, and the following data files will be available: (1) a data file for each individual wave, which contains responses from all participants in that wave of data collection, (2) a longitudinal panel data file, which contains longitudinal follow-up data from all available waves, and (3) a repeated cross-section data file, which contains the repeated cross-section data (from new respondents at each wave) from all available waves. Codebooks for each survey wave and a detailed user guide describing the data are also available. Response Rates: Of the 1,157 parents who participated in Wave 1, 828 (72%) also participated in the Wave 2 study. Presence of Common Scales: The following established scales are included in the survey:
    • Self-Efficacy, adapted from Pearlin's mastery scale (Pearlin et al., 1981) and the Rosenberg self-esteem scale (Rosenberg, 2015) and taken from the American Changing Lives Survey
    • Communication with Partner, taken from the Marriage and Relationship Survey (Lichter & Carmalt, 2009)
    • Gender Attitudes, taken from the National Survey of Families and Households (Sweet & Bumpass, 1996)
    • Depressive Symptoms (CES-D-10)
    • Stress, measured using Cohen's Perceived Stress Scale (Cohen, Kamarck, & Mermelstein, 1983)
    Full details about these scales and all other items included in the survey can be found in the user guide and codebook
    The second wave of the SPDLC was fielded in November 2020 in two stages. In the first stage, all parents who participated in W1 of the SPDLC and who continued to reside in the United States were re-contacted and asked to participate in a follow-up survey. The W2 survey was posted on Prolific, and messages were sent via Prolific’s messaging system to all previous participants. Multiple follow-up messages were sent in an attempt to increase response rates to the follow-up survey. Of the 1,157 respondents who completed the W1 survey, 873 at least started the W2 survey. Data quality checks were employed in line with best practices for online surveys (e.g., removing respondents who did not complete most of the survey or who did not pass the attention filters). After data quality checks, 5.2% of respondents were removed from the sample, resulting in a final sample size of 828 parents (a response rate of 72%).

    In the second stage, a new sample of parents was recruited. New parents had to meet the same sampling criteria as in W1 (be at least 18 years old, reside in the United States, reside with a romantic partner, and be a parent living with at least one biological child). Also similar to the W1 procedures, we oversampled men, Black individuals, individuals who did not complete college, and individuals who identified as politically conservative to increase sample diversity. A total of 1,207 parents participated in the W2 survey. Data quality checks led to the removal of 5.7% of the respondents, resulting in a final sample size of new respondents at Wave 2 of 1,138 parents.

    In both stages, participants were informed that the survey would take approximately 20 minutes to complete. All panelists were provided monetary compensation in line with Prolific’s compensation guidelines, which require that all participants earn above minimum wage for their time participating in studies.
    To be included in SPDLC, respondents had to meet the following sampling criteria at the time they enter the study: (a) be at least 18 years old, (b) reside in the United States, (c) reside with a romantic partner (i.e., be married or cohabiting), and (d) be a parent living with at least one biological child. Follow-up respondents must be at least 18 years old and reside in the United States, but may experience changes in relationship and resident parent statuses. Smallest Geographic Unit: U.S. State

    This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. In accordance with this license, all users of these data must give appropriate credit to the authors in any papers, presentations, books, or other works that use the data. A suggested citation to provide attribution for these data is included below:            

    Carlson, Daniel L. and Richard J. Petts. 2022. Study on U.S. Parents’ Divisions of Labor During COVID-19 User Guide: Waves 1-2.  

    To help provide estimates that are more representative of U.S. partnered parents, the SPDLC includes sampling weights. Weights can be included in statistical analyses to make estimates from the SPDLC sample representative of U.S. parents who reside with a romantic partner (married or cohabiting) and a child aged 18 or younger based on age, race/ethnicity, and gender. National estimates for the age, racial/ethnic, and gender profile of U.S. partnered parents were obtained using data from the 2020 Current Population Survey (CPS). Weights were calculated using an iterative raking method, such that the full sample in each data file matches the nationally representative CPS data in regard to the gender, age, and racial/ethnic distributions within the data. This variable is labeled CPSweightW2 in the Wave 2 dataset, and CPSweightLW2 in the longitudinal dataset (which includes Waves 1 and 2). There is not a weight variable included in the W1-W2 repeated cross-section data file.
     
    more » « less
  3. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  4. Abstract

    We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$w:NR+,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$f1,f2,,froverNand requirements$$k_1,k_2,\ldots ,k_r$$k1,k2,,krthe goal is to find a minimum weight subset$$S \subseteq N$$SNsuch that$$f_i(S) \ge k_i$$fi(S)kifor$$1 \le i \le r$$1ir. We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$r=1Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$O(log(kr))approximation where$$k = \sum _i k_i$$k=ikiand this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$(1-1/e-ε)while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$O(1ϵlogr)in the cost. Second, we consider the special case when each$$f_i$$fiis a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.

     
    more » « less
  5. To fulfill the insatiable demand for high data-rates, the millimeter-wave (mmW) 5G communication standard will extensively use high-order complex-modulation schemes (e.g., QAM) with high peak-to-average power ratios (PAPRs) and large RF bandwidths. High-efficiency integrated CMOS power amplifiers (PA) are highly desirable for portable devices for improved battery life, reduced form factor, and low cost. To meet simultaneous requirements for high efficiency and reasonable linearity, PAs intended for use with complex modulation are often operated in Class-AB mode [1,2]. For small input amplitude in Class-AB, the device is turned-on and has an input capacitance (Cgs) of ~(2/3)WLCox. As the input amplitude becomes large, the device turns-off for part of the RF cycle, thus reducing its effective input capacitance. This input capacitance-modulation effect creates an input-amplitude-dependent phase shift in Class-AB mode resulting in an amplitude-modulation to phase-modulation (AM-PM) distortion [2]. Consequently, it degrades linearity metrics (e.g., error vector magnitude (EVM), adjacent channel power ratio (ACPR)) in complex-modulation systems. External linearization techniques (e.g., digital pre-distortion) are often used in transmitters to meet linearity requirements, but they are complex in nature and expensive to implement. Apart from these, few works at low-GHz frequencies are reported to improve the PA's intrinsic linearity using a varactor-or PMOS-based AM-PM correction methods [1,2]. These works reduce the design overhead of external linearization systems; however, the inclusion of additional capacitive element to correct AM-PM degrades gain and efficiency, which is not optimal for mmW frequencies 
    more » « less