skip to main content


Title: Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N 2 reduction

Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N2→ 2NH3reduction involves the reductive elimination (re) of H2from two [Fe–H–Fe] bridging hydrides bound to the catalytic [7Fe–9S–Mo–C–homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe–Thorneley kinetic scheme’s proposal of mechanistically obligatory formation of one H2for each N2reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. (i) This shows that to prevent spurious disruption of FeMo-co having accumulated 4[e/H+] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. (ii) These calculations indicate an important role of sulfide hemilability in the overall conversion ofE0to a diazene-level intermediate. (iii) Perhaps most importantly, they explain (iiia) how the enzyme mechanistically couples exothermic H2formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutralre/oxidative-addition equilibrium, (iiib) while preventing the “futile” generation of two H2without N2reduction: hydrideregenerates an H2complex, but H2is only lost when displaced by N2, to form an end-on N2complex that proceeds to a diazene-level intermediate.

 
more » « less
NSF-PAR ID:
10077897
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
45
ISSN:
0027-8424
Page Range / eLocation ID:
p. E10521-E10530
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe 7 S 9 MoC-homocitrate) as a critical N 2 binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E 4 (4H), which has accumulated 4[e − /H + ] as two bridging hydrides, Fe2–H–Fe6 and Fe3–H–Fe7, and protons bound to two sulfurs. E 4 (4H) is poised to bind/reduce N 2 as driven by mechanistically-coupled H 2 reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H 2 as the enzyme relaxes to state E 2 (2H), containing 2[e − /H + ] as a hydride and sulfur-bound proton; accumulation of E 4 (4H) in α-V70I is enhanced by HP suppression. EPR and 95 Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e − /H + ] to the E 0 state of the WT MoFe protein and to both α-V70I conformations generating E 2 (2H) that contains the Fe3–H–Fe7 bridging hydride; accumulation of another 2[e − /H + ] generates E 4 (4H) with Fe2–H–Fe6 as the second hydride. E 4 (4H) in WT enzyme and a minority α-V70I E 4 (4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2–H–Fe6 followed by slower HP of Fe3–H–Fe7, which leads to transient accumulation of E 2 (2H) containing Fe3–H–Fe7. In the dominant α-V70I E 4 (4H) conformation, HP of Fe2–H–Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3–H–Fe7 occurs first and the resulting E 2 (2H) contains Fe2–H–Fe6. It is this HP suppression in E 4 (4H) that enables α-V70I MoFe to accumulate E 4 (4H) in high occupancy. In addition, HP suppression in α-V70I E 4 (4H) kinetically unmasks hydride reductive-elimination without N 2 -binding, a process that is precluded in WT enzyme. 
    more » « less
  2. The gene encoding the cyanobacterial ferritinSynFtn is up-regulated in response to copper stress. Here, we show that, whileSynFtn does not interact directly with copper, it is highly unusual in several ways. First, its catalytic diiron ferroxidase center is unlike those of all other characterized prokaryotic ferritins and instead resembles an animal H-chain ferritin center. Second, as demonstrated by kinetic, spectroscopic, and high-resolution X-ray crystallographic data, reaction of O2with the di-Fe2+center results in a direct, one-electron oxidation to a mixed-valent Fe2+/Fe3+form. Iron–O2chemistry of this type is currently unknown among the growing family of proteins that bind a diiron site within a four α-helical bundle in general and ferritins in particular. The mixed-valent form, which slowly oxidized to the more usual di-Fe3+form, is an intermediate that is continually generated during mineralization. Peroxide, rather than superoxide, is shown to be the product of O2reduction, implying that ferroxidase centers function in pairs via long-range electron transfer through the protein resulting in reduction of O2bound at only one of the centers. We show that electron transfer is mediated by the transient formation of a radical on Tyr40, which lies ∼4 Å from the diiron center. As well as demonstrating an expansion of the iron–O2chemistry known to occur in nature, these data are also highly relevant to the question of whether all ferritins mineralize iron via a common mechanism, providing unequivocal proof that they do not.

     
    more » « less
  3. Abstract

    Biological N2reduction occurs at sulfur‐rich multiiron sites, and an interesting potential pathway is concerted double reduction/ protonation of bridging N2through PCET. Here, we test the feasibility of using synthetic sulfur‐supported diiron complexes to mimic this pathway. Oxidative proton transfer from μ‐η1 : η1‐diazene (HN=NH) is the microscopic reverse of the proposed N2fixation pathway, revealing the energetics of the process. Previously, Sellmann assigned the purple metastable product from two‐electron oxidation of [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2H2)] (L1=tetradentate SSSS ligand) at −78 °C as [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2)]2+, which would come from double PCET from diazene to sulfur atoms of the supporting ligands. Using resonance Raman, Mössbauer, NMR, and EPR spectroscopies in conjunction with DFT calculations, we show that the product is not an N2complex. Instead, the data are most consistent with the spectroscopically observed species being the mononuclear iron(III) diazene complex [{Fe(PPr3)L1}(η2‐N2H2)]+. Calculations indicate that the proposed double PCET has a barrier that is too high for proton transfer at the reaction temperature. Also, PCET from the bridging diazene is highly exergonic as a result of the high Fe3+/2+redox potential, indicating that the reverse N2protonation would be too endergonic to proceed. This system establishes the “ground rules” for designing reversible N2/N2H2interconversion through PCET, such as tuning the redox potentials of the metal sites.

     
    more » « less
  4. Abstract

    In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII−Cl]+species results in the formation of [CoII4‐L)(OH2)]2+. Further reduction produces [CoI4‐L)(OH2)]+, which undergoes a rate‐limiting structural rearrangement to [CoI5‐L)]+before being protonated to form [CoIII−H]2+. The rate of [CoIII−H]2+formation is similar for all complexes in the series. UsingE1/2values of various Co species and pKavalues of [CoIII−H]2+estimated from PR experiments, we found that while the protonation of [CoIII−H]2+is unfavorable, [CoII−H]+reacts with protons to produce H2. The catalytic activity for H2evolution tracks the hydricity of the [CoII−H]+intermediate.

     
    more » « less
  5. Abstract

    A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.

     
    more » « less