The evolution of To address this, we functionally characterised 23 distinct We find that low In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated
Red algae are the oldest identifiable multicellular eukaryotes, with a fossil record dating back more than a billion years. During that time two major rhodophyte lineages, bangiophytes and florideophytes, have evolved varied levels of morphological complexity. These two groups are distinguished, in part, by different patterns of multicellular development, with florideophytes exhibiting a far greater diversity of morphologies. Interestingly, during their long evolutionary history, there is no record of a rhodophyte achieving the kinds of cellular and tissue‐specific differentiation present in other multicellular algal lineages. To date, the genetic underpinnings of unique aspects of red algal development are largely unexplored; however, they must reflect the complements and patterns of expression of key regulatory genes. Here we report comparative evolutionary and gene expression analyses of core subunits of the
- PAR ID:
- 10077985
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 54
- Issue:
- 6
- ISSN:
- 0022-3646
- Page Range / eLocation ID:
- p. 879-887
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary l ‐DOPA 4,5‐dioxygenase activity, encoded by the gene , was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed thatDODA l ‐DOPA 4,5‐dioxygenase activity evolved via a single Caryophyllales‐specific neofunctionalisation event within the gene lineage. However, this neofunctionalisation event has not been confirmed and theDODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear.DODA DODA proteins forl ‐DOPA 4,5‐dioxygenase activity, from four betalain‐pigmented and five anthocyanin‐pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updatedDODA phylogeny, we then explored the evolution ofl ‐DOPA 4,5‐dioxygenase activity.l ‐DOPA 4,5‐dioxygenase activity is distributed across the gene lineage. In this context, repeated gene duplication events within theDODA gene lineage give rise to polyphyletic occurrences of elevatedDODA l ‐DOPA 4,5‐dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro‐synteny.l ‐DOPA 4,5‐dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales. -
Summary Light signal provides the spatial and temporal information for plants to adapt to the prevailing environmental conditions. Alterations in light quality and quantity can trigger robust changes in global gene expression. In
Arabidopsis thaliana , two groups of key factors regulating those changes in gene expression areCONSTITUTIVE PHOTOMORPHOGENESIS /DEETIOLATED /FUSCA (COP /DET /FUS ) and a subset of basic helix‐loop‐helix transcription factors calledPHYTOCHROME ‐INTERACTING FACTORS (PIF s). Recently, rapid progress has been made in characterizing the E3 ubiquitin ligases for the light‐induced degradation ofPIF 1,PIF 3 andPIF 4; however, the E3 ligase(s) forPIF 5 remains unknown. Here, we show that theCUL 4COP 1–SPA complex is necessary for the red light‐induced degradation ofPIF 5. Furthermore,COP 1 andSPA proteins stabilizePIF 5 in the dark, but promote the ubiquitination and degradation ofPIF 5 in response to red light through the 26S proteasome pathway. Genetic analysis illustrates that overexpression of can partially suppress bothPIF 5cop1‐4 andspaQ seedling de‐etiolation phenotypes under dark and red‐light conditions. In addition, thePIF 5 protein level cycles under both diurnal and constant light conditions, which is also defective in thecop1‐4 andspaQ backgrounds. Bothcop1‐4 andspaQ show defects in diurnal growth pattern. Overexpression of partially restores growth defects inPIF 5cop1‐4 andspaQ under diurnal conditions, suggesting that theCOP 1–SPA complex plays an essential role in photoperiodic hypocotyl growth, partly through regulating thePIF 5 level. Taken together, our data illustrate how theCUL 4COP 1–SPA E3 ligase dynamically controls thePIF 5 level to regulate plant development. -
Summary To clarify the molecular bases of flowering time evolution in crop domestication, here we investigate the evolutionary fates of a set of four recently duplicated genes in soybean:
,FT 2a ,FT 2b andFT 2c that are homologues of the floral inducerFT 2d (FLOWERING LOCUS T ). WhileFT maintained the flowering inducer function, other genes went through contrasting evolutionary paths.FT 2a evolved attenuated expression potentially associated with a transposon insertion in the upstream intergenic region, whileFT 2b andFT 2c obtained a transposon insertion and structural rearrangement, respectively. In contrast toFT 2d andFT 2b whose mutational events occurred before the separation ofFT 2dG. max andG. soja , the evolution of is aFT 2cG. max lineage specific event. The allele carrying a transposon insertion is nearly fixed in soybean landraces and differentiates domesticated soybean from wild soybean, indicating that this allele spread at the early stage of soybean domestication. The domesticated allele causes later flowering than the wild allele under short day and exhibits a signature of selection. These findings suggest thatFT 2c may have underpinned the evolution of photoperiodic flowering regulation in soybean domestication and highlight the evolutionary dynamics of this agronomically important gene family.FT 2c -
Population genomics of divergence among extreme and intermediate color forms in a polymorphic insect
Abstract Geographic variation in insect coloration is among the most intriguing examples of rapid phenotypic evolution and provides opportunities to study mechanisms of phenotypic change and diversification in closely related lineages. The bumble bee
Bombus bifarius comprises two geographically disparate color groups characterized by red‐banded and black‐banded abdominal pigmentation, but with a range of spatially and phenotypically intermediate populations across western North America. Microsatellite analyses have revealed thatB. bifarius in the USA are structured into two major groups concordant with geography and color pattern, but also suggest ongoing gene flow among regional populations. In this study, we better resolve the relationships among major color groups to better understand evolutionary mechanisms promoting and maintaining such polymorphism. We analyze >90,000 and >25,000 single‐nucleotide polymorphisms derived from transcriptome (RNA seq) and double digest restriction site associatedDNA sequencing (ddRAD ), respectively, in representative samples from spatial and color pattern extremes inB. bifarius as well as phenotypic and geographic intermediates. Both ddRAD andRNA seq data illustrate substantial genome‐wide differentiation of the red‐banded (eastern) color form from both black‐banded (western) and intermediate (central) phenotypes and negligible differentiation among the latter populations, with no obvious admixture among bees from the two major lineages. Results thus indicate much stronger background differentiation amongB. bifarius lineages than expected, highlighting potential challenges for revealing loci underlying color polymorphism from population genetic data alone. These findings will have significance for resolving taxonomic confusion in this species and in future efforts to investigate color‐pattern evolution inB. bifarius and other polymorphic bumble bee species. -
Prasinophytes form a paraphyletic assemblage of early diverging green algae, which have the potential to reveal the traits of the last common ancestor of the main two green lineages: (i) chlorophyte algae and (ii) streptophyte algae. Understanding the genetic composition of prasinophyte algae is fundamental to understanding the diversification and evolutionary processes that may have occurred in both green lineages. In this study, we sequenced the chloroplast genome of
Pyramimonas parkeae NIES 254 and compared it with that ofP. parkeae CCMP 726, the only other fully sequencedP. parkeae chloroplast genome. The results revealed thatP. parkeae chloroplast genomes are surprisingly variable. The chloroplast genome ofNIES 254 was larger than that ofCCMP 726 by 3,204 bp, theNIES 254 large single copy was 288 bp longer, the small single copy was 5,088 bp longer, and theIR was 1,086 bp shorter than that ofCCMP 726. Similarity values of the two strains were almost zero in four large hot spot regions. Finally, the strains differed in copy number for three protein‐coding genes:ycf20 ,psaC , andndhE . Phylogenetic analyses using 16S and 18SrDNA andrbcL sequences resolved a clade consisting of these twoP. parkeae strains and a clade consisting of these plus otherPyramimonas isolates. These results are consistent with past studies indicating that prasinophyte chloroplast genomes display a higher level of variation than is commonly found among land plants. Consequently, prasinophyte chloroplast genomes may be less useful for inferring the early history of Viridiplantae than has been the case for land plant diversification.