skip to main content

Title: Surface Passivation and Carrier Collection in {110}, {100} and Circular Si Microwire Solar Cells

Surface recombination is a major bottleneck for realizing highly efficient micro/nanostructure solar cells. Here, parametric studies of the influence of Si microwire (SiMW) surface‐facet orientation (rectangular with flat‐facets, {110}, {100} and circular), with a fixed height of 10 µm, diameter (D= 1.5–9.5 µm), and sidewall spacing (S= 2.5–8.5 µm), and mesh‐grid density (1–16 mm−2) on recombination and carrier collection in SiMW solar cells with radial p‐n junctions are reported. An effective surface passivation layer composed of thin thermally grown silicon dioxide (SiO2) and silicon nitride (SiNx) layers is employed. For a fixedDof 1.5 µm, tight SiMW spacing results in improved short‐circuit current density (Jsc= 30.1 mA cm−2) and sparse arrays result in open‐circuit voltages (Voc= 0.552 V) that are similar to those of control Si planar cells. For a fixedS, smallerDresults in better light trapping at shorter wavelengths and higherJscwhile largerDexhibits better light trapping at larger wavelengths and a higherVoc. With a mesh‐grid electrode the power conversion efficiency increases to 15.3%. These results provide insights on the recombination mechanisms in SiMW solar cells and provide general design principles for optimizing their performance.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering.

    more » « less
  2. Abstract

    Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm−2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, withVocof 1.80 V,Jscof 11.07 mA cm−2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved highVocin the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.

    more » « less
  3. Abstract

    Although tip‐enhanced tribo‐tunneling in metal/semiconductor point nanocontact is capable of producing DC with high current density, scaling up the process for power harvesting for practical applications is challenging due to the complexity of tip array fabrication and insufficient voltage output. Here, it is demonstrated that mechanical contact between a carbon aerogel and silicon (SiO2/Si) interface naturally forms multiple nanocontacts for tribo‐tunneling current generation with an open‐circuit voltage output (VOC) reaching 2 V, and short‐circuit DC current output (ISC) of ≈15 µA. It has a theoretical current density ( J*) on the order of 100 A m−2. Molecular dynamics simulation and atomistic field theory show that a strong localized electronic excitation can be induced at a dynamic carbon/SiO2sliding interface, which is in good agreement with the experimental results. The DC power output is enhanced by the intense local pressure at the presence of nanocontacts, as well as the increased sliding velocityv. To demonstrate the method for practical applications, light‐emitting diodes (LEDs) with different colors are successfully lighted by a single‐carbon aerogel monolith/SiO2sliding unit, and the DC electricity is stored in a capacitor without an additional rectification circuit.

    more » « less
  4. Abstract

    Reactive ion etching (RIE) used to fabricate high‐aspect‐ratio (HAR) nano/microstructures is known to damage semiconductor surfaces which enhances surface recombination and limits the conversion efficiency of nanostructured solar cells. Here, defect passivation of ultrathin Al2O3‐coated Si micropillars (MPs) using different surface pretreatment steps is reported. Effects on interface state density are quantified by means of electrochemical impedance spectroscopy which is used to extract quantitative capacitance–voltage and conductance–voltage characteristics from HAR dielectric–semiconductor structures which would otherwise suffer from high gate leakage currents if tested using solid‐state metal–insulator–semiconductor structures. High‐temperature thermal oxidation to form a sacrificial oxide on RIE‐fabricated Si MPs, followed by atomic layer deposition of 4 nm thick Al2O3after removal of the sacrificial layer produces an interface trap density (Dit) as low as 1.5 × 1011cm−2eV−1at the mid‐gap energy of silicon. However, a greatly reduced mid‐gapDit(2 × 1011cm−2eV−1) is possible even with a simple air annealing procedure having a maximum temperature of 400 °C.

    more » « less
  5. Placing plasmonic nanoparticles (NPs) in close proximity to semiconductor nanostructures renders effective tuning of the optoelectronic properties of semiconductors through the localized surface plasmon resonance (LSPR)-induced enhancement of light absorption and/or promotion of carrier transport. Herein, we report on, for the first time, the scrutiny of carrier dynamics of perovskite solar cells (PSCs) via sandwiching monodisperse plasmonic/dielectric core/shell NPs with systematically varied dielectric shell thickness yet fixed plasmonic core diameter within an electron transport layer (ETL). Specifically, a set of Au NPs with precisely controlled dimensions ( i.e. , fixed Au core diameter and tunable SiO 2 shell thickness) and architectures (plain Au NPs and plasmonic/dielectric Au/SiO 2 core/shell NPs) are first crafted by capitalizing on the star-like block copolymer nanoreactor strategy. Subsequently, these monodisperse NPs are sandwiched between the two consecutive TiO 2 ETLs. Intriguingly, there exists a critical dielectric SiO 2 shell thickness, below which hot electrons from the Au core are readily injected to TiO 2 ( i.e. , hot electron transfer (HET)); this promotes local electron mobility in the TiO 2 ETL, leading to improved charge transport and increased short-circuit current density ( J sc ). It is also notable that the HET effect moves up the Fermi level of TiO 2 , resulting in an enhanced built-in potential and open-circuit voltage ( V oc ). Taken together, the PSCs constructed by employing a sandwich-like TiO 2 /Au NPs/TiO 2 ETL exhibit both greatly enhanced J sc and V oc , delivering champion PCEs of 18.81% and 19.42% in planar and mesostructured PSCs, respectively. As such, the judicious positioning of rationally designed monodisperse plasmonic NPs in the ETL affords effective tailoring of carrier dynamics, thereby providing a unique platform for developing high-performance PSCs. 
    more » « less