skip to main content


Title: From Wall Slip to Bulk Shear Banding in Entangled Polymer Solutions
Abstract

This article reviews the past activities and emergent understanding of nonlinear rheology of entangled polymeric liquids, with the purpose of pointing out the remaining challenges. A key component of this subject concerns wall slip and shear strain localization, for example, shear banding. It is emphasized that wall slip and shear banding are not isolated phenomena and share the same conceptual origin. The concept of the extrapolation length identified for quantification of the magnitude of wall slip is equally useful in determining whether shear banding would occur. An adequate estimate of the extrapolation length is essential for the description of shear banding. This paper concludes by listing some remaining challenges in the field of nonlinear polymer rheology.

 
more » « less
NSF-PAR ID:
10078137
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
220
Issue:
1
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The formation and evolution of a heterogeneous flow and flow reversal are examined in highly elastic, gel-like wormlike micelles (WLMs) formed from an amphiphilic triblock poloxamer P234 in 2M NaCl. A combination of linear viscoelastic, steady shear, and creep rheology demonstrate that these WLMs have a yield stress and exhibit viscoelastic aging, similar to some soft glassy materials. Nonlinear shear rheology and rheoparticle tracking velocimetry reveal that these poloxamer WLMs undergo a period of strong elastic recoil and flow reversal after the onset of shear startup. As flow reversal subsides, a fluidized high shear rate region and a nearly immobile low shear rate region of fluid form, accompanied by wall slip and elastic instabilities. The features of this flow heterogeneity are reminiscent of those for aging yield stress fluids, where the heterogeneous flow forms during the initial stress overshoot and is sensitive to the inherent stress gradient of the flow geometry. Additionally, macroscopic bands that form transiently above a critical shear rate become “trapped” due to viscoelastic aging in the nearly immobile region. This early onset of the heterogeneous flow during the rapidly decreasing portion of the stress overshoot differs from that typically observed in shear banding WLMs and is proposed to be necessary for observing significant flow reversal. Exploring the early-time, transient behavior of this WLM gel with rheology similar to both WLM solutions and soft glassy materials provides new insights into spatially heterogeneous flows in both of these complex fluids. 
    more » « less
  2. We investigate the flow evolution of a linear and a branched wormlike micellar solution with matched rheology in a Taylor–Couette (TC) cell using a combination of particle-tracking velocimetry, birefringence, and turbidity measurements. Both solutions exhibit a stress plateau within a range of shear rates. Under startup of a steady shear rate flow within the stress plateau, both linear and branched samples exhibit strong transient shear thinning flow profiles. However, while the flow of the linear solution evolves to a banded structure at longer times, the flow of the branched solution transitions to a curved velocity profile with no evidence of shear banding. Flow-induced birefringence measurements indicate transient birefringence banding with strong micellar alignment in the high shear band for the linear solution. The transient flow-induced birefringence is stronger for the branched system at an otherwise identical Wi. At longer times, the birefringence bands are replaced by a chaotic flow reminiscent of elastic instabilities. Visualization of the flow-induced turbidity in the velocity gradient-vorticity plane reveals quasi-steady banding with a turbidity contrast between high and low shear bands in the linear solution. However, the turbidity evolves uniformly within the gap of the TC cell for the branched solution, corroborating the non-banded quasi-steady velocimetry results. Finally, we show that while elastic instabilities in the linear solution emerge in the high shear band, the flow of branched solution at high Wi becomes unstable due to end effects, with growing end regions that ultimately span the entire axial length of the TC cell. 
    more » « less
  3. We investigate the effects of micellar entanglement number on the kinetics of shear banding flow formation in a Taylor–Couette flow. Three sets of wormlike micellar solutions, each set with a similar fluid elasticity and zero-shear-rate viscosity, but with varying entanglement densities, are studied under the startup of steady shear. Our experiments indicate that in the set with low fluid elasticity, the transient shear banding flow is characterized by the formation of a transient flow reversal in a range of entanglement densities. Outside of this range, the transient flow reversal is not observed. For the sets of medium and high elasticities, the transient flow reversals exist for relatively small entanglement densities and disappear for large entanglement densities. Our analysis shows that wall slip and elastic instabilities do not affect the transient flow feature. We identify a correlation between micellar entanglement number, the width of the stress plateau, and the extent of the transient flow reversal. As the micellar entanglement number increases, the width of the stress plateau first increases; then, at a higher micellar entanglement number, the plateau width decreases. Therefore, we hypothesize that the transient flow reversal is connected to the micellar entanglement number through the width of the stress plateau. 
    more » « less
  4. Abstract

    Average strain across the Great Basin over the past 15 Kyr derived from slip rates on individual faults shows a concentration of both right‐lateral shear and extension in the western Great Basin (Walker Lane). Straining is modest across the central Great Basin, with a zone of higher strain in the eastern Great Basin including the Wasatch Front. The horizontal velocity field derived from 15‐ka fault slip rates is similar to the pattern of GPS velocities, suggesting that regional strain release patterns have been constant over the past 15 Kyr. The magnitudes of velocities inferred from fault slip rates, relative to North America, are lower than those from GPS in the Walker Lane, suggesting that the geologic record is missing evidence of strike slip on faults, and seismic hazard may be higher than suggested by fault slip rates alone. The observed strain concentration in the western Great Basin is consistent with a Sierra Nevada block that is more rigid than the surrounding lithosphere of nonlinear rheology, which concentrates strain east of and adjacent to the rigid block. Treating the western U.S. as a thin viscous sheet with the Sierra Nevada block as a rigid boundary provides a consistent history of continuous deformation in the Walker Lane over decadal, millennial, and Neogene timescales.

     
    more » « less
  5. Abstract

    Cementitious binders amenable to extrusion‐based 3D printing are formulated by tailoring the fresh microstructure through the use of fine limestone powder or a combination of limestone powder and microsilica or metakaolin. Mixtures are proportioned with and without a superplasticizer to enable different particle packings at similar printability levels. A simple microstructural parameter, which implicitly accounts for the solid volume and inverse square dependence of particle size on yield stress can be used to select preliminary material combinations for printable binders. The influence of composition/microstructure on the response of pastes to extension or squeezing are also brought out. Extrusion rheology is used in conjunction with a phenomenological model to better understand the properties of significance in extrusion‐based printing of cementitious materials. The extrusion yield stress and die wall slip shear stress extracted from the model enables an understanding of their relationships with the fresh paste microstructure, which are crucial in selecting binders, extrusion geometry, and processing parameters for 3D printing.

     
    more » « less