skip to main content


Title: Glass transition broadening via nanofiller‐contiguous polymer network in aromatic thermosetting copolyester nanocomposites
ABSTRACT

The glass transition is a genuine imprint of temperature‐dependent structural relaxation dynamics of backbone chains in amorphous polymers, which can also reflect features of chemical transformations induced in macromolecular architectures. Optimization of thermophysical properties of polymer nanocomposites beyond the state of the art is contingent on strong interfacial bonding between nanofiller particles and host polymer matrix chains that accordingly modifies glass transition characteristics. Contemporary polymer nanocomposite configurations have demonstrated only marginal glass transition temperature shifts utilizing conventional polymer matrix and functionalized nanofiller combinations. We present nanofiller‐contiguous polymer network with aromatic thermosetting copolyester nanocomposites in which carbon nanofillers covalently conjugate with cure advancing crosslinked backbone chains through functional end‐groups of constituent precursor oligomers upon anin situpolymerization reaction.Viathoroughly transformed backbone chain configuration, the polymer nanocomposites demonstrate unprecedented glass transition peak broadening by about 100 °C along with significant temperature upshift of around 80 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 1595–1603

 
more » « less
NSF-PAR ID:
10078165
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part B: Polymer Physics
Volume:
56
Issue:
24
ISSN:
0887-6266
Page Range / eLocation ID:
p. 1595-1603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Branched and linear nonmigratory internal plasticizers attached to PVC by a pendant triazole linkage were synthesized and investigated. Copper‐free azide‐alkyne thermal cycloaddition was employed to covalently bind triazole‐based phthalate mimics to PVC. To systematically investigate the effect of plasticizer structure on glass transition temperature, several architectural motifs were explored. Free volume theory was considered when designing many of these internal plasticizers: hexyl‐tethers were utilized to generate additional space between the triazole‐phthalate mimic and the polymer backbone. Miscibility of these triazole‐plasticizers in PVC is important: variation of the ester moieties on the triazole possessing alkyl and/or poly(ethylene oxide) chains produced a wide range of glass transition temperatures (Tg): from anti‐plasticizing 96 °C, to highly efficient plasticized materials exhibitingTgvalues as low as −42 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2397–2411

     
    more » « less
  2. The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson‐MWCNT) and diethyl malonate (dem‐MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60°C has been found for the 1 wt% dapson‐MWCNT nanocomposite. Additional modification of dapson‐MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid‐MWCNT), showed 30°C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37°C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson‐MWCNT nanofiller. POLYM. COMPOS., 38:E472–E489, 2017. © 2016 Society of Plastics Engineers

     
    more » « less
  3. ABSTRACT

    Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644

     
    more » « less
  4. ABSTRACT

    Polyvinylidene fluoride‐iron oxide (PVDF‐Fe2O3) nanocomposites have been obtained my melt mixing of PVDF with Fe2O3nanoparticles. The interactions between the polymeric matrix and the nanofiller have been investigated by wide angle X‐ray scattering (WAXS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, using both red and green excitations (lasers). WAXS, FTIR, and Raman spectra confirm that all samples containαPVDF as the major crystalline form of the polymeric matrix. Experimental data revealed small changes in the positions of X‐ray lines as well as modifications of the width of X‐ray lines upon loading by Fe2O3nanoparticles. FTIR and Raman spectra are dominated by the lines of the polymeric matrix. Within the experimental errors, the positions of Raman lines are not affected by the wavelength of the incoming electromagnetic radiation, although they are sensitive to the strain of the polymeric matrix induced by addition of the nanofiller. The loading of the polymeric matrix with nanoparticles stretches the macromolecular chains, affecting their vibrational spectra (FTIR and Raman). A complex dependence of the positions of some Raman and FTIR lines on the loading with Fe2O3is reported. The manuscript provides a detailed analysis of the effects of nanofiller on the position of WAXS, FTIR, and Raman lines. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2020,137, 48907.

     
    more » « less
  5. ABSTRACT

    The properties of phosphonium polyelectrolytes (PELs) were evaluated in an effort to assess the influence of both side chain and main chain composition. The influence of side chain was examined by comparing properties of a series of PELs having hydrophobic octyloxy side chains to those of structural analogues lacking the side chains. The influence exerted by backbone flexibility/length of spacer between charges was revealed by comparing properties of two series of polymers with a variable number of methylene units between phosphonium charge‐bearing sites. Side chain composition and spacing between phosphonium units lead to noteworthy influence on thermal stability, glass transition, and crystallinity. The molecular structure of PELs also correlates with trends in film morphology and critical surface energy of PEL dip‐cast films. Sensitivity of morphology to humidity or water in the casting solvent was observed. Supramolecular assembly of films via layer‐by‐layer deposition of PELs alternating with anionic polythiophene derivative layers was also undertaken. The linearity of film growth, amount of material deposited in each bilayer, polycation:polyanion ratio, and film roughness all show noteworthy trends that depend on both the presence/absence of side chains and on spacing between ionic centers. The relationship between side chain and spacer on bactericidal activity againstStaphylococcus aureusandEscherichia coliwas assessed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 24–34

     
    more » « less