skip to main content


Title: Influence of carboxylated and phosphonated single‐walled carbon nanotubes on the transport properties of sulfonated poly(styrene‐isobutylene‐styrene) membranes
ABSTRACT

This study discusses the effect of carboxylated (COOH) and phosphonated (PO3H2) single‐walled carbon nanotubes (SWCNTs) on the transport properties of sulfonated poly(styrene‐isobutylene‐styrene) (SO3H SIBS) as polymer nanocomposite membranes (PNMs) for direct methanol fuel cell (DMFC) and chemical and biological protective clothing (CBPC) applications. The properties were determined as a function of sulfonation level of SIBS, SWCNTs functionalization and loading. A comprehensive materials characterization study was performed to understand the interactions between the nanofillers and the functionalized polymer matrix, and to determine the effect of their incorporation on the resulting nanostructure of the PNMs. Results indicate that the sulfonation level is the variable that dictates nanofiller dispersion, mechanical properties, water absorption capabilities, morphology, and oxidative stability of SO3H SIBS. Meanwhile, the nanofiller loading and functionalization influenced the transport properties. The nanofillers reduced methanol permeation. PO3H2SWCNTs increased the proton conductivity but at a high sulfonation level (i.e.,90 mol %), the ionic interconnectivity caused a more complex morphology decreasing the transport of protons. Optimal selectivity in transport properties were found with a sulfonation level of 61 mol % and a PO3H2SWCNTs loading of 1.0 wt. % for DMFC and 0.5 wt. % for CBPC due to changes in morphology and the unique transport mechanism of permeants through the PNMs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2475–2495

 
more » « less
NSF-PAR ID:
10078168
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part A: Polymer Chemistry
Volume:
56
Issue:
21
ISSN:
0887-624X
Page Range / eLocation ID:
p. 2475-2495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This work discusses the effect of isopropyl phosphate (IP) on the transport properties of sulfonated poly(styrene‐isobutylene‐styrene) (SO3H SIBS) as membranes for direct methanol fuel cell (DMFC) and chemical and biological protective clothing (CBPC) applications. The properties were determined as a function of SIBS sulfonation level (i.e., 24, 34, 49, and 84 mol %) and IP loading (i.e., 1, 3, 5, 11, and 15 wt %). A comprehensive material characterization study (e.g.,FTIR, TGA, AFM, and SAXS) was performed to confirm the presence of the phosphate groups in the polymer matrix, assess the thermal stability of the proton‐exchange membranes (PEMs), and understand how the unique interactions between the phosphate and sulfonic groups influenced the nanostructure of SO3H SIBS. The transport properties, water absorption capabilities (i.e.,swelling ratio, water uptake, etc.), oxidative stability, and ion‐exchange capacity (IEC) were performed to evaluate the impact of IP on the properties of the resulting solvent‐casted membranes. Results suggest that the morphology, thermal stability, and vapor permeability are governed by the sulfonation level, whereas the IEC, oxidative stability, water absorption capabilities, and the rest of the transport properties are dominated by the ionic content (i.e.,sulfonic and phosphate groups) and their synergistic effects. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47009.

     
    more » « less
  2. Graphene oxide (GO) and its sulfonated analog (sGO) have been incorporated into sulfonated poly(styrene‐isobutylene‐styrene) (SO3H SIBS) in order to enhance its water retention and proton conductivity, while aiming to block permeant passage through the material. The polymer nanocomposite membranes (PNMs) were tested for two applications: direct methanol fuel cell and chemical and biological protective clothing. The transport properties of the membranes were determined as a function of SIBS sulfonation level (i.e., 37, 61, and 88 mol%), filler type (i.e., GO and sGO) and filler loading (i.e., 1, 3, 5, and 10 wt%). Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the functionalization and incorporation of the fillers into SO3H SIBS. No significant changes were observed in the thermal stability or FTIR spectra of the PNMs after addition of the fillers. Dissimilar behaviors were observed for the ion exchange capacity, water absorption capabilities and transport properties of the membranes after incorporation of the fillers. Atomic force microscopy (AFM) phase images and Fenton's test results indicate that the oxidative stability of the PNMs is associated to the interconnectivity between the hydrophilic domains of the fillers and SO3H SIBS. The PNMs presented low permeability and high proton conductivity and thus, functioned adequately for both applications. POLYM. ENG. SCI., 59:E455–E467, 2019. © 2018 Society of Plastics Engineers

     
    more » « less
  3. ABSTRACT

    Sulfonated, block copolymers have traditionally been studied for applications in fuel cells and chemical protective clothing, among others. As such, most investigations have focused on the evaluation of transport properties and the selectivity and permeability of the polymer membranes. This work, however, focuses on the electrical characterization of sulfonated poly(styrene–isobutylene–styrene) (SIBS) triblock copolymer thin films. More specifically, the dielectric properties of SIBS are evaluated as a function of critical parameters such as frequency, sulfonation percent, and the polymer concentration. The results show that the dielectric constant increases with sulfonation percent and polymer concentration to values as high as 13,600. This work also provides insights into the correlation of SIBS electrical properties with its chemical structure and morphology. The structure–property relationship is derived through a combination of techniques including: elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and atomic force microscopy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2018,135, 45662.

     
    more » « less
  4. ABSTRACT

    The glass transition is a genuine imprint of temperature‐dependent structural relaxation dynamics of backbone chains in amorphous polymers, which can also reflect features of chemical transformations induced in macromolecular architectures. Optimization of thermophysical properties of polymer nanocomposites beyond the state of the art is contingent on strong interfacial bonding between nanofiller particles and host polymer matrix chains that accordingly modifies glass transition characteristics. Contemporary polymer nanocomposite configurations have demonstrated only marginal glass transition temperature shifts utilizing conventional polymer matrix and functionalized nanofiller combinations. We present nanofiller‐contiguous polymer network with aromatic thermosetting copolyester nanocomposites in which carbon nanofillers covalently conjugate with cure advancing crosslinked backbone chains through functional end‐groups of constituent precursor oligomers upon anin situpolymerization reaction.Viathoroughly transformed backbone chain configuration, the polymer nanocomposites demonstrate unprecedented glass transition peak broadening by about 100 °C along with significant temperature upshift of around 80 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 1595–1603

     
    more » « less
  5. ABSTRACT

    The use of ionic liquids (ILs) as media in radical polymerizations has demonstrated the ability of these unique solvents to improve both reaction kinetics and polymer product properties. However, the bulk of these studies have examined the polymerization behavior of common organic monomers (e.g., methyl methacrylate, styrene) dissolved in conventional ILs. There is increasing interest in polymerized ILs (poly(ILs)), which are ionomers produced from the direct polymerization of styrene‐, vinyl‐, and acrylate‐functionalized ILs. Here, the photopolymerization kinetics of IL monomers are investigated for systems in which styrene or vinyl functionalities are pendant from the imidazolium cation. Styrene‐functionalized IL monomers typically polymerized rapidly (full conversion ≤1 min) in both neat compositions or when diluted with a nonpolymerizable IL, [C2mim][Tf2N]. However, monomer conversion in vinyl‐functionalized IL monomers is much more dependent on the nature of the nonpolymerizable group. ATR‐FTIR analysis and molecular simulations of these monomers and monomer mixtures identified the presence of multiple intermolecular interactions (e.g., π–π stacking, IL aggregation) that contribute to the polymerization behaviors of these systems. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2364–2375

     
    more » « less