skip to main content


Title: Trade‐off between reproductive and anti‐competitor abilities in an insect–parasitic nematode–bacteria symbiosis
Abstract

Mutualistic symbionts can provide diverse benefits to their hosts and often supply key trait variation for host adaptation. The bacterial symbionts of entomopathogenic nematodes play a crucial role in successful colonization of and reproduction in the insect host. Additionally, these symbionts can produce a diverse array of antimicrobial compounds to deter within‐host competitors. Natural isolates of the symbiont,Xenorhabdus bovienii,show considerable variation in their ability to target sympatric competitors via bacteriocins, which can inhibit the growth of sensitiveXenorhabdusstrains. Both the bacteria and its nematode partner have been shown to benefit from bacteriocin production when within‐host competition with a sensitive competitor occurs. Despite this benefit, several isolates ofXenorhabdusdo not inhibit sympatric strains. To understand how this variation in allelopathy could be maintained, we tested the hypothesis that inhibiting isolates face a reproductive cost in the absence of competition. We tested this hypothesis by examining the reproductive success of inhibiting and non‐inhibiting isolates coupled with their natural nematode host in a non‐competitive context. We found that nematodes carrying non‐inhibitors killed the insect host more rapidly and were more likely to successfully reproduce than nematodes carrying inhibitors. Lower reproductive success of inhibiting isolates was repeatable across nematode generations and across insect host species. However, no difference in insect mortality was observed between inhibiting and non‐inhibiting isolates when bacteria were injected into insects without their nematode partners. Our results indicate a trade‐off between the competitive and reproductive roles of symbionts, such that inhibiting isolates, which are better in the face of within‐host competition, pay a reproductive cost in the absence of competition. Furthermore, our results support the hypothesis that symbiont variation within populations can be maintained through context‐dependent fitness benefits conferred to their hosts. As such, our study offers novel insights into the selective forces maintaining variation within a single host–symbiont population and highlights the role of competition in mutualism evolution.

 
more » « less
PAR ID:
10078198
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
8
Issue:
22
ISSN:
2045-7758
Page Range / eLocation ID:
p. 10847-10856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Steinernema entomopathogenic nematodes form specific, obligate symbiotic associations with gram-negative, gammaproteobacteria members of the Xenorhabdus genus. Together, the nematodes and symbiotic bacteria infect and kill insects, utilize the nutrient-rich cadaver for reproduction, and then reassociate, the bacteria colonizing the nematodes’ anterior intestines before the nematodes leave the cadaver to search for new prey. In addition to their use in biocontrol of insect pests, these nematode-bacteria pairs are highly tractable experimental laboratory models for animal-microbe symbiosis and parasitism research. One advantageous feature of entomopathogenic nematode model systems is that the nematodes are optically transparent, which facilitates direct observation of nematode-associated bacteria throughout the lifecycle. In this work, green- and red-fluorescently labeled X. griffiniae HGB2511 bacteria were created and associated with their S. hermaphroditum symbiotic nematode partners and observed using fluorescence microscopy. As expected, the fluorescent bacteria were visible as a colonizing cluster in the lumen of the anterior intestinal caecum of the infective stage of the nematode. These tools allow detailed observations of X. griffiniae localization and interactions with its nematode and insect host tissues throughout their lifecycles.

     
    more » « less
  2. Abstract

    Interspecific competition can vary depending on the stage, age, or physiological state of the competitors. Competitive ability often increases with age or size; alternatively, senescence can lead to a loss of viability and reduced competitive success. Differences between species in their age‐specific competitive abilities can promote coexistence in the face of substantial niche overlap.

    We examined two sympatric species of nematodes (genusSteinernema) to determine whether their competitive relationship changes as a function of age. These obligately killing insect parasites are known for their broad host ranges and are transmitted from insect to insect via a juvenile stage propagule that is free‐living in the soil. Here, we tested whether the two species differed in the effects of age by examining the mortality of insect hosts infected with young or old transmission stage nematodes of each species. We also performed mixed infections, where an equal ratio of both species was simultaneously exposed to a host, to determine the effect of age on competitiveness.

    One species showed reduced performance with age, as older propagules were slower at inducing host mortality. In contrast, the other species increased in killing speed with age. In competition, insect mortality rate was predictive of competitive outcome, such that if one species induced considerably faster host death in a single‐species infection, it was competitively dominant in the coinfection. Accordingly, we found a shift in the competitive relationship between the two species with age.

    Our work demonstrates that species differences in the effects of aging can lead to dramatic shifts in reproductive success. As these effects are realized solely in a competitive environment, both spatial patchiness and temporal niche partitioning may be important for promoting coexistence.

     
    more » « less
  3. Symbiosis, the beneficial interactions between two organisms, is a ubiquitous feature of all life on Earth, including associations between animals and bacteria. However, the specific molecular and cellular mechanisms which underlie the diverse partnerships formed between animals and bacteria are still being explored. Entomopathogenic nematodes transport bacteria between insect hosts, together they kill the insect, and the bacteria consume the insect and serve as food source for the nematodes. These nematodes, including those in the Steinernema genus, are effective laboratory models for studying the molecular mechanisms of symbiosis because of the natural partnership they form with Xenorhabdus bacteria and their straightforward husbandry. Steinernema hermaphroditum nematodes and their Xenorhabdus griffiniae symbiotic bacteria are being developed as a genetic model pair for studying symbiosis. Our goal in this project was to begin to identify bacterial genes that may be important for symbiotic interactions with the nematode host. Towards this end, we adapted and optimized a protocol for delivery and insertion of a lacZ-promoter-probe transposon for use in the S. hermaphroditum symbiont, X. griffiniae HGB2511 (Cao et al., 2022). We assessed the frequencies at which we obtained exconjugants, metabolic auxotrophic mutants, and active promoter-lacZ fusions. Our data indicate that the Tn10 transposon inserted relatively randomly based on the finding that 4.7% of the mutants exhibited an auxotrophic phenotype. Promoter-fusions with the transposon-encoded lacZ, which resulted in expression of β-galactosidase activity, occurred in 47% of the strains. To our knowledge, this is the first mutagenesis protocol generated for this bacterial species, and will facilitate the implementation of large scale screens for symbiosis and other phenotypes of interest in X. griffiniae.

     
    more » « less
  4. Abstract

    Many interspecific interactions are shaped by coevolution. Transmission mode is thought to influence opportunities for coevolution within symbiotic interactions. Vertical transmission maintains partner fidelity, increasing opportunities for coevolution, but horizontal transmission may disrupt partner fidelity, potentially reducing opportunities for coevolution. Despite these predictions, the role of coevolution in the maintenance of horizontally transmitted symbioses is unclear. Leveraging a tractable insect–bacteria symbiosis, we tested for signatures of pairwise coevolution by assessing patterns of host–symbiont specialization. If pairwise coevolution defines the interaction, we expected to observe evidence of reciprocal specialization between hosts and their local symbionts. We found no evidence for local adaptation between sympatric lineages of Anasa tristis squash bugs and Caballeronia spp. symbionts across their native geographic range. We also found no evidence for specialization between three co-localized Anasa host species and their native Caballeronia symbionts. Our results demonstrate generalist dynamics underlie the interaction between Anasa insect hosts and their Caballeronia symbionts. We predict that selection from multiple host species may favor generalist symbiont traits through diffuse coevolution. Alternatively, selection for generalist traits may be a consequence of selection by hosts for fixed cooperative symbiont traits without coevolution.

     
    more » « less
  5. Summary

    Xenorhabdus nematophilabacteria are mutualists ofSteinernema carpocapsaenematodes and pathogens of insects.Xenorhabdus nematophilaexhibits phenotypic variation between insect virulence (V) and the mutualistic (M) support of nematode reproduction and colonization initiation in the infective juvenile (IJ) stage nematode that carriesX. nematophilabetween insect hosts. The V and M phenotypes occur reciprocally depending on levels of the transcription factor Lrp: high‐Lrp expressors are M+V− while low‐Lrp expressors are V+M−. We report here that variable (wild type) or fixed high‐Lrp expressors also are optimized, relative to low‐ or no‐Lrp expressors, for colonization of additional nematode stages: juvenile, adult and pre‐transmission infective juvenile (IJ). In contrast, we found that after the bacterial population had undergone outgrowth in mature IJs, the advantage for colonization shifted to low‐Lrp expressors: fixed low‐Lrp expressors (M−V+) and wild type (M+V+) exhibited higher average bacterial CFU per IJ than did high‐Lrp (M+V−) or no‐Lrp (M−V−) strains. Further, the bacterial population becomes increasingly low‐Lrp expressing, based on expression of an Lrp‐dependent fluorescent reporter, as IJs age. These data support a model that virulentX. nematophilahave a selective advantage and accumulate in aging IJs in advance of exposure to insect hosts in which this phenotype is necessary.

     
    more » « less