skip to main content


Title: MDockPeP: An ab‐initio protein–peptide docking server

Protein–peptide interactions play a crucial role in a variety of cellular processes. The protein–peptide complex structure is a key to understand the mechanisms underlying protein–peptide interactions and is critical for peptide therapeutic development. We present a user‐friendly protein–peptide docking server, MDockPeP. Starting from a peptide sequence and a protein receptor structure, the MDockPeP Server globally docks the all‐atom, flexible peptide to the protein receptor. The produced modes are then evaluated with a statistical potential‐based scoring function, ITScorePeP. This method was systematically validated using the peptiDB benchmarking database. At least one near‐native peptide binding mode was ranked among top 10 (or top 500) in 59% (85%) of the bound cases, and in 40.6% (71.9%) of the challenging unbound cases. The server can be used for both protein–peptide complex structure prediction and initial‐stage sampling of the protein–peptide binding modes for other docking or simulation methods. MDockPeP Server is freely available athttp://zougrouptoolkit.missouri.edu/mdockpep. © 2018 Wiley Periodicals, Inc.

 
more » « less
NSF-PAR ID:
10078233
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
39
Issue:
28
ISSN:
0192-8651
Page Range / eLocation ID:
p. 2409-2413
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a nonredundant benchmark, coined PepPro, for testing peptide–protein docking algorithms. Currently, PepPro contains 89 nonredundant experimentally determined peptide–protein complex structures, with peptide sequence lengths ranging from 5 to 30 amino acids. The benchmark covers peptides with distinct secondary structures, including helix, partial helix, a mixture of helix and β‐sheet, β‐sheet formed through binding, β‐sheet formed through self‐folding, and coil. In addition, unbound proteins' structures are provided for 58 complexes and can be used for testing the ability of a docking algorithm handling the conformational changes of proteins during the binding process. PepPro should benefit the docking community for the development and improvement of peptide docking algorithms. The benchmark is available athttp://zoulab.dalton.missouri.edu/PepPro_benchmark. © 2019 Wiley Periodicals, Inc.

     
    more » « less
  2. Abstract

    Significant efforts have been devoted in the last decade to improving molecular docking techniques to predict both accurate binding poses and ranking affinities. Some shortcomings in the field are the limited number of standard methods for measuring docking success and the availability of widely accepted standard data sets for use as benchmarks in comparing different docking algorithms throughout the field. In order to address these issues, we have created a Cross‐Docking Benchmark server. The server is a versatile cross‐docking data set containing 4,399 protein‐ligand complexes across 95 protein targets intended to serve as benchmark set and gold standard for state‐of‐the‐art pose and ranking prediction in easy, medium, hard, or very hard docking targets. The benchmark along with a customizable cross‐docking data set generation tool is available athttp://disco.csb.pitt.edu. We further demonstrate the potential uses of the server in questions outside of basic benchmarking such as the selection of the ideal docking reference structure.

     
    more » « less
  3. Abstract

    Determination of the bound pose of a ligand is a critical first step in many in silico drug discovery tasks. Molecular docking is the main tool for the prediction of non-covalent binding of a protein and ligand system. Molecular docking pipelines often only utilize the information of one ligand binding to the protein despite the commonly held hypothesis that different ligands share binding interactions when bound to the same receptor. Here we describe Open-ComBind, an easy-to-use, open-source version of the ComBind molecular docking pipeline that leverages information from multiple ligands without known bound structures to enhance pose selection. We first create distributions of feature similarities between ligand pose pairs, comparing near-native poses with all sampled docked poses. These distributions capture the likelihood of observing similar features, such as hydrogen bonds or hydrophobic contacts, in different pose configurations. These similarity distributions are then combined with a per-ligand docking score to enhance overall pose selection by 5% and 4.5% for high-affinity and congeneric series helper ligands, respectively. Open-ComBind reduces the average RMSD of ligands in our benchmark dataset by 9.0%. We provide Open-ComBind as an easy-to-use command line and Python API to increase pose prediction performance atwww.github.com/drewnutt/open_combind.

     
    more » « less
  4. LINKED ARTICLES

    This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visithttp://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc

     
    more » « less
  5. Abstract

    In the ligand prediction category of CASP15, the challenge was to predict the positions and conformations of small molecules binding to proteins that were provided as amino acid sequences or as models generated by the AlphaFold2 program. For most targets, we used our template‐based ligand docking program ClusPro ligTBM, also implemented as a public server available athttps://ligtbm.cluspro.org/. Since many targets had multiple chains and a number of ligands, several templates, and some manual interventions were required. In a few cases, no templates were found, and we had to use direct docking using the Glide program. Nevertheless, ligTBM was shown to be a very useful tool, and by any ranking criteria, our group was ranked among the top five best‐performing teams. In fact, all the best groups used template‐based docking methods. Thus, it appears that the AlphaFold2‐generated models, despite the high accuracy of the predicted backbone, have local differences from the x‐ray structure that make the use of direct docking methods more challenging. The results of CASP15 confirm that this limitation can be frequently overcome by homology‐based docking.

     
    more » « less