skip to main content


Title: A Bayesian design for phase I cancer therapeutic vaccine trials

Phase I clinical trials are the first step in drug development to test a new drug or drug combination on humans. Typical designs of Phase I trials use toxicity as the primary endpoint and aim to find the maximum tolerable dosage. However, these designs are poorly applicable for the development of cancer therapeutic vaccines because the expected safety concerns for these vaccines are not as much as cytotoxic agents. The primary objectives of a cancer therapeutic vaccine phase I trial thus often include determining whether the vaccine shows biologic activity and the minimum dose necessary to achieve a full immune or even clinical response. In this paper, we propose a new Bayesian phase I trial design that allows simultaneous evaluation of safety and immunogenicity outcomes. We demonstrate the proposed clinical trial design by both a numeric study and a therapeutic human papillomavirus vaccine trial.

 
more » « less
NSF-PAR ID:
10078245
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Statistics in Medicine
Volume:
38
Issue:
7
ISSN:
0277-6715
Page Range / eLocation ID:
p. 1170-1189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Infectious diseases are a major threat to global human health, yet prophylactic treatment options can be limited, as safe and efficacious vaccines exist only for a fraction of all diseases. Notably, devastating diseases such as acquired immunodeficiency syndrome (AIDS) and coronavirus disease of 2019 (COVID‐19) currently do not have vaccine therapies. Conventional vaccine platforms, such as live attenuated vaccines and whole inactivated vaccines, can be difficult to manufacture, may cause severe side effects, and can potentially induce severe infection. Subunit vaccines carry far fewer safety concerns due to their inability to cause vaccine‐based infections. The applicability of protein nanoparticles (NPs) as vaccine scaffolds is promising to prevent infectious diseases, and they have been explored for a number of viral, bacterial, fungal, and parasitic diseases. Many types of protein NPs exist, including self‐assembling NPs, bacteriophage‐derived NPs, plant virus‐derived NPs, and human virus‐based vectors, and these particular categories will be covered in this review. These vaccines can elicit strong humoral and cellular immune responses against specific pathogens, as well as provide protection against infection in a number of animal models. Furthermore, published clinical trials demonstrate the promise of applying these NP vaccine platforms, which include bacteriophage‐derived NPs, in addition to multiple viral vectors that are currently used in the clinic. The continued investigations of protein NP vaccine platforms are critical to generate safer alternatives to current vaccines, advance vaccines for diseases that currently lack effective prophylactic therapies, and prepare for the rapid development of new vaccines against emerging infectious diseases.

    This article is categorized under:

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease

    Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures

     
    more » « less
  2. Abstract

    Cancer vaccines hold promise as an immunotherapeutic modality based on their potential to generate tumor antigen-specific T cell responses and long-lived antitumor responses capable of combating metastatic disease and recurrence. However, cancer vaccines have historically failed to deliver significant therapeutic benefit in the clinic, which we maintain is due in part to drug delivery challenges that have limited vaccine immunogenicity and efficacy. In this review, we examine some of the known and putative failure mechanisms of common first-generation clinical cancer vaccines, and describe how the rational design of materials engineered for vaccine delivery and immunomodulation can address these shortcomings. First, we outline vaccine design principles for augmenting cellular immunity to tumor antigens and describe how well-engineered materials can improve vaccine efficacy, highlighting recent innovations in vaccine delivery technology that are primed for integration into neoantigen vaccine development pipelines. We also discuss the importance of sequencing, timing, and kinetics in mounting effective immune responses to cancer vaccines, and highlight examples of materials that potentiate antitumor immunity through spatiotemporal control of immunomodulation. Furthermore, we describe several engineering strategies for improving outcomes of in situ cancer vaccines, which leverage local, intratumoral delivery to stimulate systemic immunity. Finally, we highlight recent innovations leveraging nanotechnology for increasing the immunogenicity of the tumor microenvironment (TME), which is critical to enhancing tumor infiltration and function of T cells elicited in response to cancer vaccines. These immunoengineering strategies and tools complement ongoing advances in cancer vaccines as they reemerge as an important component of the immunotherapeutic armamentarium.

     
    more » « less
  3. Abstract

    Despite therapeutic advancements, oral cavity squamous cell carcinoma (OCSCC) remains a difficult disease to treat. Systemic platinum-based chemotherapy often leads to dose-limiting toxicity (DLT), affecting quality of life. PRV111 is a nanotechnology-based system for local delivery of cisplatin loaded chitosan particles, that penetrate tumor tissue and lymphatic channels while avoiding systemic circulation and toxicity. Here we evaluate PRV111 using animal models of oral cancer, followed by a clinical trial in patients with OCSCC. In vivo, PRV111 results in elevated cisplatin retention in tumors and negligible systemic levels, compared to the intravenous, intraperitoneal or intratumoral delivery. Furthermore, PRV111 produces robust anti-tumor responses in subcutaneous and orthotopic cancer models and results in complete regression of carcinogen-induced premalignant lesions. In a phase 1/2, open-label, single-arm trial (NCT03502148), primary endpoints of efficacy (≥30% tumor volume reduction) and safety (incidence of DLTs) of neoadjuvant PRV111 were reached, with 69% tumor reduction in ~7 days and over 87% response rate. Secondary endpoints (cisplatin biodistribution, loco-regional control, and technical success) were achieved. No DLTs or drug-related serious adverse events were reported. No locoregional recurrences were evident in 6 months. Integration of PRV111 with current standard of care may improve health outcomes and survival of patients with OCSCC.

     
    more » « less
  4. A Bayesian phase I‐II design is presented that optimizes the dose of a new agent within predefined prognostic subgroups. The design is motivated by a trial to evaluate targeted agents for treating metastatic clear cell renal carcinoma, where a prognostic risk score defined by clinical variables and biomarkers is well established. Two clinical outcomes are used for dose‐finding, time‐to‐toxicity during a prespecified follow‐up period, and efficacy characterized by ordinal disease status evaluated at the end of follow‐up. A joint probability model is constructed for these outcomes as functions of dose and subgroup. The model performs adaptive clustering of adjacent subgroups having similar dose‐outcome distributions to facilitate borrowing information across subgroups. To quantify toxicity‐efficacy risk‐benefit trade‐offs that may differ between subgroups, the objective function is based on outcome utilities elicited separately for each subgroup. In the context of the renal cancer trial, a design is constructed and a simulation study is presented to evaluate the design's reliability, safety, and robustness, and to compare it to designs that either ignore subgroups or run a separate trial within each subgroup.

     
    more » « less
  5. Abstract

    For over two decades, Rituximab and CHOP combination treatment (rCHOP) has remained the standard treatment approach for diffuse large B-cell lymphoma (DLBCL). Despite numerous clinical trials exploring treatment alternatives, few options have shown any promise at further improving patient survival and recovery rates. A wave of new therapeutic approaches have recently been in development with the rise of immunotherapy for cancer, however, the cost of clinical trials is prohibitive of testing all promising approaches. Improved methods of early drug screening are essential for expediting the development of the therapeutic approaches most likely to help patients. Microfluidic devices provide a powerful tool for drug testing with enhanced biological relevance, along with multi-parameter data outputs. Here, we describe a hydrogel spheroid-based microfluidic model for screening lymphoma treatments. We utilized primary patient DLBCL cells in combination with NK cells and rCHOP treatment to determine the biological relevance of this approach. We observed cellular viability in response to treatment, rheological properties, and cell surface marker expression levels correlated well with expected in vivo characteristics. In addition, we explored secretory and transcriptomic changes in response to treatment. Our results showed complex changes in phenotype and transcriptomic response to treatment stimuli, including numerous metabolic and immunogenic changes. These findings support this model as an optimal platform for the comparative screening of novel treatments.

     
    more » « less