The thermal properties of epoxy‐based binary composites comprised of graphene and copper nanoparticles are reported. It is found that the “synergistic” filler effect, revealed as a strong enhancement of the thermal conductivity of composites with the size‐dissimilar fillers, has a well‐defined filler loading threshold. The thermal conductivity of composites with a moderate graphene concentration of
The synthesis and characterization of epoxy‐based composites with few‐layer graphene fillers, which are capable of dual‐functional applications, are reported. It is found that composites with certain types of few‐layer graphene fillers reveal an efficient total electromagnetic interference shielding, SEtot≈ 45 dB, in the important X‐band frequency range,
- NSF-PAR ID:
- 10078365
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract fg = 15 wt% exhibits an abrupt increase as the loading of copper nanoparticles approachesf Cu≈ 40 wt%, followed by saturation. The effect is attributed to intercalation of spherical copper nanoparticles between the large graphene flakes, resulting in formation of the highly thermally conductive percolation network. In contrast, in composites with a high graphene concentration,fg = 40 wt%, the thermal conductivity increases linearly with addition of copper nanoparticles. A thermal conductivity of 13.5 ± 1.6 Wm−1K−1is achieved in composites with binary fillers offg = 40 wt% andf Cu= 35 wt%. It has also been demonstrated that the thermal percolation can occur prior to electrical percolation even in composites with electrically conductive fillers. The obtained results shed light on the interaction between graphene fillers and copper nanoparticles in the composites and demonstrate potential of such hybrid epoxy composites for practical applications in thermal interface materials and adhesives. -
Abstract Polymer composite films containing fillers comprising quasi‐1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to
≈ 106. The polymer composites with low loadings of quasi‐1D TaSe3fillers (< 3 vol%) reveal excellent electromagnetic interference shielding in the X‐band GHz and extremely high frequency sub‐THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high‐aspect‐ratio electrically conductive TaSe3atomic‐thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high‐frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating. -
null (Ed.)Polymer composite films containing fillers comprising quasi-1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to ≈106. The polymer composites with low loadings of quasi-1D TaSe3 fillers (<3 vol%) reveal excellent electromagnetic interference shielding in the X-band GHz and extremely high frequency sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically conductive TaSe3 atomic-thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating.more » « less
-
Abstract Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness are highly desirable for next‐generation portable and wearable electronic devices. Here, spin spray layer‐by‐layer (SSLbL) to rapidly assemble Ti3C2T
x MXene‐carbon nanotube (CNT) composite films is shown and their potential for EMI shielding is demonstrated. The SSLbL technique allows strategic combinations of nanostructured materials and polymers providing a rich platform for developing hierarchical architectures with desirable cross‐functionalities including controllable transparency, thickness, and conductivity, as well as high stability and flexibility. These semi‐transparent LbL MXene‐CNT composite films show high conductivities up to 130 S cm−1and high specific shielding effectiveness up to 58 187 dB cm2g−1, which is attributed to both the excellent electrical conductivity of the conductive fillers (i.e., MXene and CNT) and the enhanced absorption with the LbL architecture of the films. Remarkably, these values are among the highest reported values for flexible and semi‐transparent composite thin films. This work could offer new solutions for next‐generation EMI shielding challenges. -
Abstract Silk nanofibers (SNFs) from abundant sources are low‐cost and environmentally friendly. Combined with other functional materials, SNFs can help create bioelectronics with excellent biocompatibility without environmental concerns. However, it is still challenging to construct an SNF‐based composite with high conductivity, flexibility, and mechanical strength for all SNF‐based electronics. Herein, this work reports the design and fabrication of Ti3C2T
x ‐silver@silk nanofibers (Ti3C2Tx‐Ag@SNF) composites with multi‐dimensional heterogeneous conductive networks using combined in situ growth and vacuum filtration methods. The ultrahigh electrical conductivity of Ti3C2Tx ‐Ag@SNF composites (142959 S m−1) provides the kirigami‐patterned soft heaters with a rapid heating rate of 87 °C s−1. The multi‐dimensional heterogeneous network further allows the creation of electromagnetic interference shielding devices with an exceptionally high specific shielding effectiveness of 10,088 dB cm−1. Besides working as a triboelectric layer to harvest the mechanical energy and recognize the hand gesture, the Ti3C2Tx ‐Ag@SNF composites can also be combined with an ionic layer to result in a capacitive pressure sensor with a high sensitivity of 410 kPa−1in a large range due to electronic‐double layer effect. The applications of the Ti3C2Tx ‐Ag@SNF composites in recognizing human gestures and human‐machine interfaces to wirelessly control a trolley demonstrate the future development of all SNF‐based electronics.