skip to main content


Title: Short-term and seasonal pH, p CO 2 and saturation state variability in a coral-reef ecosystem: CORAL REEF pCO 2 , pH, SATURATION STATES
Award ID(s):
0628406
NSF-PAR ID:
10078404
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
26
Issue:
3
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis. 
    more » « less
  2. Abstract

    Given the severe implications of climate change and ocean acidification (OA) for marine ecosystems, there is an urgent need to quantify ecosystem function in present‐day conditions to determine the impacts of future changes in environmental conditions. For tropical coral reefs that are acutely threatened by these effects, the metabolism of benthic communities provides several metrics suitable for this purpose, but the application of infrastructure to manipulate conditions and measure community responses is not fully realized. To date, most studies of the effects of OA on coral reefs have been conducted ex situ, and while greater ecological relevance can be achieved through free ocean carbon enrichment (FOCE) experiments on undisturbed areas of reef, such approaches have been deterred by technical challenges (e.g., spatial scale and duration, stable maintenance of conditions). In this study, we describe novel experimental infrastructure called shallow coral reef (SCoRe) FOCE to overcome these challenges and present data from a proof of concept application in Mo'orea, French Polynesia. Our objectives were to (1) implement an autonomous system that could be deployed kilometers from shore, (2) regulate the chemical (pCO2) and physical properties of seawater over undisturbed, shallow (∼2–5‐m depth) coral reef over multiple weeks, and (3) measure the metabolic response of the coral community to the treatment conditions. We describe the design, function, and application of the SCoRe FOCE, and present data demonstrating its efficacy. This infrastructure has great potential for advancing ecologically relevant studies of the effects of changing environmental conditions on coral reefs.

     
    more » « less
  3. Abstract. The aquatic eddy covariance technique stands out as a powerful method for benthic O2 flux measurements in shelf environments because itintegrates effects of naturally varying drivers of the flux such as current flow and light. In conventional eddy covariance instruments, the timeshift caused by spatial separation of the measuring locations of flow and O2 concentration can produce substantial flux errors that aredifficult to correct. We here introduce a triple O2 sensor eddy covariance instrument (3OEC) that by instrument design eliminates theseerrors. This is achieved by positioning three O2 sensors around the flow measuring volume, which allows the O2concentration to be calculated at the point of the current flow measurements. The new instrument was tested in an energetic coastal environment with highly permeablecoral reef sands colonised by microphytobenthos. Parallel deployments of the 3OEC and a conventional eddy covariance system (2OEC) demonstrate thatthe new instrument produces more consistent fluxes with lower error margin. 3OEC fluxes in general were lower than 2OEC fluxes, and the nighttimefluxes recorded by the two instruments were statistically different. We attribute this to the elimination of uncertainties associated with the timeshift correction. The deployments at ∼ 10 m water depth revealed high day- and nighttime O2 fluxes despite the relatively loworganic content of the coarse sediment and overlying water. High light utilisation efficiency of the microphytobenthos and bottom currents increasingpore water exchange facilitated the high benthic production and coupled respiration. 3OEC measurements after sunset documented a gradual transfer ofnegative flux signals from the small turbulence generated at the sediment–water interface to the larger wave-dominated eddies of the overlying watercolumn that still carried a positive flux signal, suggesting concurrent fluxes in opposite directions depending on eddy size and a memory effect oflarge eddies. The results demonstrate that the 3OEC can improve the precision of benthic flux measurements, including measurements in environmentsconsidered challenging for the eddy covariance technique, and thereby produce novel insights into the mechanisms that control flux. We consider thefluxes produced by this instrument for the permeable reef sands the most realistic achievable with present-day technology. 
    more » « less