Short-term and seasonal pH, p CO 2 and saturation state variability in a coral-reef ecosystem: CORAL REEF pCO 2 , pH, SATURATION STATES
- Award ID(s):
- 0628406
- PAR ID:
- 10078404
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 26
- Issue:
- 3
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Given the severe implications of climate change and ocean acidification (OA) for marine ecosystems, there is an urgent need to quantify ecosystem function in present‐day conditions to determine the impacts of future changes in environmental conditions. For tropical coral reefs that are acutely threatened by these effects, the metabolism of benthic communities provides several metrics suitable for this purpose, but the application of infrastructure to manipulate conditions and measure community responses is not fully realized. To date, most studies of the effects of OA on coral reefs have been conducted ex situ, and while greater ecological relevance can be achieved through free ocean carbon enrichment (FOCE) experiments on undisturbed areas of reef, such approaches have been deterred by technical challenges (e.g., spatial scale and duration, stable maintenance of conditions). In this study, we describe novel experimental infrastructure called shallow coral reef (SCoRe) FOCE to overcome these challenges and present data from a proof of concept application in Mo'orea, French Polynesia. Our objectives were to (1) implement an autonomous system that could be deployed kilometers from shore, (2) regulate the chemical (pCO2) and physical properties of seawater over undisturbed, shallow (∼2–5‐m depth) coral reef over multiple weeks, and (3) measure the metabolic response of the coral community to the treatment conditions. We describe the design, function, and application of the SCoRe FOCE, and present data demonstrating its efficacy. This infrastructure has great potential for advancing ecologically relevant studies of the effects of changing environmental conditions on coral reefs.more » « less
-
null (Ed.)Studies of the coordination chemistry between the diphenylamide ligand, NPh 2 , and the smaller rare-earth Ln III ions, Ln = Y, Dy, and Er, led to the structural characterization by single-crystal X-ray diffraction crystallography of both solvated and unsolvated complexes, namely, tris(diphenylamido-κ N )bis(tetrahydrofuran-κ O )yttrium(III), Y(NPh 2 ) 3 (THF) 2 or [Y(C 12 H 10 N) 3 (C 4 H 8 O) 2 ], 1-Y , and the erbium(III) (Er), 1-Er , analogue, and bis[μ-1κ N :2(η 6 )-diphenylamido]bis[bis(diphenylamido-κ N )yttrium(III)], [(Ph 2 N) 2 Y(μ-NPh 2 )] 2 or [Y 2 (C 12 H 10 N) 6 ], 2-Y , and the dysprosium(III) (Dy), 2-Dy , analogue. The THF ligands of 1-Er are modeled with disorder across two positions with occupancies of 0.627 (12):0.323 (12) and 0.633 (7):0.367 (7). Also structurally characterized was the tetrametallic Er III bridging oxide hydrolysis product, bis(μ-diphenylamido-κ 2 N : N )bis[μ-1κ N :2(η 6 )-diphenylamido]tetrakis(diphenylamido-κ N )di-μ 3 -oxido-tetraerbium(III) benzene disolvate, {[(Ph 2 N)Er(μ-NPh 2 )] 4 (μ-O) 2 }·(C 6 H 6 ) 2 or [Er 4 (C 12 H 10 N) 8 O 2 ]·2C 6 H 6 , 3-Er . The 3-Er structure was refined as a three-component twin with occupancies 0.7375:0.2010:0.0615.more » « less
-
Abstract The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2Txand Ti2CTxin aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Txand Ti2CTxMXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation.more » « less
-
The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.more » « less
An official website of the United States government

