skip to main content


Title: Ion‐Sieving Carbon Nanoshells for Deeply Rechargeable Zn‐Based Aqueous Batteries
Abstract

As an alternative to lithium‐ion batteries, Zn‐based aqueous batteries feature nonflammable electrolytes, high theoretical energy density, and abundant materials. However, a deeply rechargeable Zn anode in lean electrolyte configuration is still lacking. Different from the solid‐to‐solid reaction mechanism in lithium‐ion batteries, Zn anodes in alkaline electrolytes go through a solid‐solute‐solid mechanism (Zn‐Zn(OH)42−‐ZnO), which introduces two problems. First, discharge product ZnO on the surface prevents further reaction of Zn underneath, which leads to low utilization of active material and poor rechargeability. Second, soluble intermediates change Zn anode morphology over cycling. In this work, an ion‐sieving carbon nanoshell coated ZnO nanoparticle anode is reported, synthesized in a scalable way with controllable shell thickness, to solve the problems of passivation and dissolution simultaneously. The nanosized ZnO prevents passivation, while microporous carbon shell slows down Zn species dissolution. Under extremely harsh testing conditions (closed cell, lean electrolyte, no ZnO saturation), this Zn anode shows significantly improved performance compared to Zn foil and bare ZnO nanoparticles. The deeply rechargeable Zn anode reported is an important step toward practical high‐energy rechargeable aqueous batteries (e.g., Zn‐air batteries). And the ion‐sieving nanoshell concept demonstrated is potentially beneficial to other electrodes such as sulfur cathode for Li‐S batteries.

 
more » « less
NSF-PAR ID:
10078475
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
8
Issue:
36
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Earth-abundant, cost-effective electrode materials are essential for sustainable rechargeable batteries and global decarbonization. Manganese dioxide (MnO2) and hard carbon both exhibit high structural and chemical tunability, making them excellent electrode candidates for batteries. Herein, we elucidate the impact of electrolytes on the cycling performance of commercial electrolytic manganese dioxide in Li chemistry. We leverage synchrotron X-ray analysis to discern the chemical state and local structural characteristics of Mn during cycling, as well as to quantify the Mn deposition on the counter electrode. By using an ether-based electrolyte instead of conventional carbonate electrolytes, we circumvent the formation of a surface Mn(II)-layer and Mn dissolution from LixMnO2. Consequently, we achieved an impressive ∼100% capacity retention for MnO2after 300 cycles at C/3. To create a lithium metal-lean full cell, we introduce hard carbon as the anode which is compatible with ether-based electrolytes. Commercial hard carbon delivers a specific capacity of ∼230 mAh g−1at 0.1 A g−1without plateau, indicating a surface-adsorption mechanism. The resulting manganese dioxide||hard carbon full cell exhibits stable cycling and high Coulombic efficiency. Our research provides a promising solution to develop cost-effective, scalable, and safe energy storage solutions using widely available manganese oxide and hard carbon materials.

     
    more » « less
  2. Abstract

    Aqueous zinc metal batteries (AZMB) are emerging as a promising alternative to the prevailing existing Lithium‐ion battery technology. However, the development of AZMBs is hindered due to challenges including dendrite formation, hydrogen evolution reaction (HER), and ZnO passivation on the anode. Here, a tetraalkylsulfonamide (TAS) additive for suppressing HER, dendrite formation, and enhancing cyclability is rationally designed. Only 1 mmTAS is found that can effectively displace water molecules from the Zn2+solvation shell, thereby altering the solvation matrix of Zn2+and disrupting the hydrogen bond network of free water, as demonstrated through67 Zn and1H nuclear magnetic resonance spectroscopy, high‐resolution mass spectrometry (HRMS), and density functional theory (DFT) studies. Voltammetry synchronized with in situ monitoring of the electrode surface reveals suppressed dendritic growth and HER in the presence of TAS. Electrochemical mass spectrometry (ECMS) captures real‐time HER suppression during Zn electrodeposition, revealing the ability of TAS to suppress the HER by an order of magnitude. A ≈25‐fold cycle life improvement from ≈100 h to over 2500 h in coin cells cycled in the presence of TAS. Furthermore, by suppressing passivation product formation, it is demonstrated that strategy robustly maximizes the stability of Zn metal anodes.

     
    more » « less
  3. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  4. Abstract

    Aqueous zinc-ion batteries, in terms of integration with high safety, environmental benignity, and low cost, have attracted much attention for powering electronic devices and storage systems. However, the interface instability issues at the Zn anode caused by detrimental side reactions such as dendrite growth, hydrogen evolution, and metal corrosion at the solid (anode)/liquid (electrolyte) interface impede their practical applications in the fields requiring long-term performance persistence. Despite the rapid progress in suppressing the side reactions at the materials interface, the mechanism of ion storage and dendrite formation in practical aqueous zinc-ion batteries with dual-cation aqueous electrolytes is still unclear. Herein, we design an interface material consisting of forest-like three-dimensional zinc-copper alloy with engineered surfaces to explore the Zn plating/stripping mode in dual-cation electrolytes. The three-dimensional nanostructured surface of zinc-copper alloy is demonstrated to be in favor of effectively regulating the reaction kinetics of Zn plating/stripping processes. The developed interface materials suppress the dendrite growth on the anode surface towards high-performance persistent aqueous zinc-ion batteries in the aqueous electrolytes containing single and dual cations. This work remarkably enhances the fundamental understanding of dual-cation intercalation chemistry in aqueous electrochemical systems and provides a guide for exploring high-performance aqueous zinc-ion batteries and beyond.

     
    more » « less
  5. Abstract

    Iron ion batteries using Fe2+as a charge carrier have yet to be widely explored, and they lack high‐performing Fe2+hosting cathode materials to couple with the iron metal anode. Here, it is demonstrated that VOPO4∙2H2O can reversibly host Fe2+with a high specific capacity of 100 mAh g−1and stable cycling performance, where 68% of the initial capacity is retained over 800 cycles. In sharp contrast, VOPO4∙2H2O's capacity of hosting Zn2+fades precipitously over tens of cycles. VOPO4∙2H2O stores Fe2+with a unique mechanism, where upon contacting the electrolyte by the VOPO4∙2H2O electrode, Fe2+ions from the electrolyte get oxidized to Fe3+ions that are inserted and trapped in the VOPO4∙2H2O structure in an electroless redox reaction. The trapped Fe3+ions, thus, bolt the layered structure of VOPO4∙2H2O, which prevents it from dissolution into the electrolyte during (de)insertion of Fe2+. The findings offer a new strategy to use a redox‐active ion charge carrier to stabilize the layered electrode materials.

     
    more » « less