skip to main content


Title: Legitimate visitors and nectar robbers of Aquilegia formosa have different effects on nectar bacterial communities
NSF-PAR ID:
10078526
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
9
Issue:
10
ISSN:
2150-8925
Page Range / eLocation ID:
Article No. e02459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The evolution of novel features, such as eyes or wings, that allow organisms to exploit their environment in new ways can lead to increased diversification rates. Therefore, understanding the genetic and developmental mechanisms involved in the origin of these key innovations has long been of interest to evolutionary biologists. In flowering plants, floral nectar spurs are a prime example of a key innovation, with the independent evolution of spurs associated with increased diversification rates in multiple angiosperm lineages due to their ability to promote reproductive isolation via pollinator specialization. As none of the traditional plant model taxa have nectar spurs, little is known about the genetic and developmental basis of this trait. Nectar spurs are a defining feature of the columbine genusAquilegia(Ranunculaceae), a lineage that has experienced a relatively recent and rapid radiation. We use a combination of genetic mapping, gene expression analyses, and functional assays to identify a gene crucial for nectar spur development,POPOVICH(POP), which encodes a C2H2 zinc-finger transcription factor.POPplays a central role in regulating cell proliferation in theAquilegiapetal during the early phase (phase I) of spur development and also appears to be necessary for the subsequent development of nectaries. The identification ofPOPopens up numerous avenues for continued scientific exploration, including further elucidating of the genetic pathway of which it is a part, determining its role in the initial evolution of theAquilegianectar spur, and examining its potential role in the subsequent evolution of diverse spur morphologies across the genus.

     
    more » « less
  2. Sethuraman, A (Ed.)
    Abstract Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10× linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates. 
    more » « less
  3. Summary

    The black nectar produced byMelianthusflowers is thought to serve as a visual attractant to bird pollinators, but the chemical identity and synthesis of the black pigment are unknown.

    A combination of analytical biochemistry, transcriptomics, proteomics, and enzyme assays was used to identify the pigment that givesMelianthusnectar its black color and how it is synthesized. Visual modeling of pollinators was also used to infer a potential function of the black coloration.

    High concentrations of ellagic acid and iron give the nectar its dark black color, which can be recapitulated through synthetic solutions containing only ellagic acid and iron(iii). The nectar also contains a peroxidase that oxidizes gallic acid to form ellagic acid.In vitroreactions containing the nectar peroxidase, gallic acid, hydrogen peroxide, and iron(iii) fully recreate the black color of the nectar. Visual modeling indicates that the black color is highly conspicuous to avian pollinators within the context of the flower.

    Melianthusnectar contains a natural analog of iron‐gall ink, which humans have used since at least medieval times. This pigment is derived from an ellagic acid‐Fe complex synthesized in the nectar and is likely involved in the attraction of passerine pollinators endemic to southern Africa.

     
    more » « less
  4. Abstract

    Nectar is the main reward that flowers offer to pollinators to entice repeated visitation.Cucurbita pepo(squash) is an excellent model for studying nectar biology, as it has large nectaries that produce large volumes of nectar relative to most other species. Squash is also monoecious, having both female and male flowers on the same plant, which allows comparative analyses of nectary function in one individual. Here, we report the nectary transcriptomes from both female and male nectaries at four stages of floral maturation. Analysis of these transcriptomes and subsequent confirmatory experiments revealed a metabolic progression in nectaries leading from starch synthesis to starch degradation and to sucrose biosynthesis. These results are consistent with previously published models of nectar secretion and also suggest how a sucrose‐rich nectar can be synthesized and secreted in the absence of active transport across the plasma membrane. Nontargeted metabolomic analyses of nectars also confidently identified 40 metabolites in both female and male nectars, with some displaying preferential accumulation in nectar of either male or female flowers. Cumulatively, this study identified gene targets for reverse genetics approaches to study nectary function, as well as previously unreported nectar metabolites that may function in plant‐biotic interactions.

     
    more » « less
  5. Summary

    Although the evolution of the selfing syndrome often involves reductions in floral size, pollen and nectar, few studies of selfing syndrome divergence have examined nectar. We investigate whether nectar traits have evolved independently of other floral size traits in the selfing syndrome, whether nectar traits diverged due to drift or selection, and the extent to which quantitative trait locus (QTL) analyses predict genetic correlations.

    We use F5 recombinant inbred lines (RILs) generated from a cross betweenIpomoea cordatotrilobaandIpomoea lacunosa. We calculate genetic correlations to identify evolutionary modules, test whether trait divergence was due to selection, identify QTLs and perform correlation analyses to evaluate how well QTL properties reflect genetic correlations.

    Nectar and floral size traits form separate evolutionary modules. Selection has acted to reduce nectar traits in the selfingI. lacunosa. Genetic correlations predicted from QTL properties are consistent with observed genetic correlations.

    Changes in floral traits associated with the selfing syndrome reflect independent evolution of at least two evolutionary modules: nectar and floral size traits. We also demonstrate directional selection on nectar traits, which is likely to be independent of selection on floral size traits. Our study also supports the expected mechanistic link between QTL properties and genetic correlations.

     
    more » « less