skip to main content

Title: MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization
; ;
Award ID(s):
1642385 1642410
Publication Date:
Journal Name:
IEEE Transactions on Knowledge and Data Engineering
Page Range or eLocation-ID:
544 to 558
Sponsoring Org:
National Science Foundation
More Like this
  1. Transparently checkpointing MPI for fault tolerance and load balancing is a long-standing problem in HPC. The problem has been complicated by the need to provide checkpoint-restart services for all combinations of an MPI implementation over all network interconnects. This work presents MANA (MPI-Agnostic Network-Agnostic transparent checkpointing), a single code base which supports all MPI implementation and interconnect combinations. The agnostic properties imply that one can checkpoint an MPI application under one MPI implementation and perhaps over TCP, and then restart under a second MPI implementation over InfiniBand on a cluster with a different number of CPU cores per node. This technique is based on a novel "split-process" approach, which enables two separate programs to co-exist within a single process with a single address space. This work overcomes the limitations of the two most widely adopted transparent checkpointing solutions, BLCR and DMTCP/InfiniBand, which require separate modifications to each MPI implementation and/or underlying network API. The runtime overhead is found to be insignificant both for checkpoint-restart within a single host, and when comparing a local MPI computation that was migrated to a remote cluster against an ordinary MPI computation running natively on that same remote cluster.
  2. The MPI standard has long included one-sided communication abstractions through the MPI Remote Memory Access (RMA) interface. Unfortunately, the MPI RMA chapter in the 4.0 version of the MPI standard still contains both well-known and lesser known short-comings for both implementations and users, which lead to potentially non-optimal usage patterns. In this paper, we identify a set of issues and propose ways for applications to better express anticipated usage of RMA routines, allowing the MPI implementation to better adapt to the application's needs. In order to increase the flexibility of the RMA interface, we add the capability to duplicate windows, allowing access to the same resources encapsulated by a window using different configurations. In the same vein, we introduce the concept of MPI memory handles, meant to provide life-time guarantees on memory attached to dynamic windows, removing the overhead currently present in using dynamically exposed memory. We will show that our extensions provide improved accumulate latencies, reduced overheads for multi-threaded flushes, and allow for zero overhead dynamic memory window usage.