skip to main content


Title: Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon
Abstract

The Amazon rainforest has experienced rapid land‐use changes over the last few decades, including extensive deforestation that can affect riparian habitats and streams. The aim of this study was to assess responses of stream fish assemblages to deforestation and land cover change in the eastern Amazon. We expected that percentage of forest in the catchment is correlated with local habitat complexity, which in turn determines fish assemblage composition and structure. We sampled 71 streams in areas with different land uses and tested for relationships between stream fish assemblages and local habitat and landscape variables while controlling for the effect of intersite distance. Fish assemblage composition and structure were correlated with forest coverage, but local habitat variables explained more of the variation in both assemblage composition and structure than landscape variables. Intersite distance contributed to variance explained by local habitat and landscape variables, and the percentage of variance explained by the unique contribution of local habitat was approximately equivalent to the shared variance explained by all three factors in the model. In these streams of the eastern Amazon, fish assemblages were most strongly influenced by features of instream and riparian habitats, yet indirect effects of deforestation on fish assemblage composition and structure were observed even though intact riparian zones were present at most sites. Long‐term monitoring of the hydrographic basin, instream habitat and aquatic fauna is needed to test for potential legacy effects and time lags, as well as assess species responses to continuing deforestation and land‐use changes in the Amazon.

 
more » « less
NSF-PAR ID:
10078586
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology of Freshwater Fish
Volume:
28
Issue:
2
ISSN:
0906-6691
Page Range / eLocation ID:
p. 317-329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Urbanization alters local environmental conditions and the ability of species to disperse between remnant habitat patches within the urban matrix. Nonetheless, despite the ongoing growth of urban areas worldwide, few studies have investigated the relative importance of dispersal and local environmental conditions for influencing species composition within urban and suburban landscapes. Here, we explore this question using spatial patterns of plant species composition.

    Location

    The Research Triangle area, which includes the cities of Raleigh, Durham, Chapel Hill and Cary, in central North Carolina, USA.

    Time period

    2012–2014.

    Major taxa studied

    Vascular plants.

    Methods

    We sampled riparian forest plant communities along an urban‐to‐rural gradient and used redundancy analysis to identify predictors of species composition patterns for groups of species categorized by nativity and seed dispersal mode. We first compared the ability of different models of habitat connectivity (least‐cost paths that avoided urban land cover versus Euclidean and along‐stream distance) to explain spatial patterns of species composition. We then partitioned the variation in species composition explained by habitat connectivity models, local environmental conditions and measures of urbanization in the surrounding landscape.

    Results

    We found that several groups of native species were best explained by least‐cost path models that avoided urban development, suggesting that urbanization impedes dispersal within this landscape, particularly for short‐dispersed species. Environmental variables related to urbanization (e.g., temperature, stream incision) were important predictors of species composition for many species groups, but measures of urbanization in the surrounding landscape were more important for exotic than for native species.

    Main conclusions

    Our results demonstrate that urbanization influences plant species composition via its effects on both habitat connectivity and environmental conditions. However, the strength of these effects varies somewhat predictably across seed dispersal modes and between native and exotic species. These results highlight the importance of landscape‐scale planning for urban conservation.

     
    more » « less
  2. null (Ed.)
    Intensive agriculture alters headwater streams, but our understanding of its effects is limited in tropical regions where rates of agricultural expansion and intensification are currently greatest. Riparian forest protections are an important conservation tool, but whether they provide adequate protection of stream function in these areas of rapid tropical agricultural development has not been well studied. To address these gaps, we conducted a study in the lowland Brazilian Amazon, an area undergoing rapid cropland expansion, to assess the effects of land use change on organic matter dynamics (OM), ecosystem metabolism, and nutrient concentrations and uptake (nitrate and phosphate) in 11 first order streams draining forested (n = 4) or cropland (n = 7) watersheds with intact riparian forests. We found that streams had similar terrestrial litter inputs, but OM biomass was lower in cropland streams. Gross primary productivity was low and not different between land uses, but ecosystem respiration and net ecosystem production showed greater seasonality in cropland streams. Although we found no difference in stream concentrations of dissolved nutrients, phosphate uptake exceeded nitrate uptake in all streams and was higher in cropland than forested streams. This indicates that streams will be more retentive of phosphorus than nitrogen and that if fertilizer nitrogen reaches streams, it will be exported in stream networks. Overall, we found relatively subtle differences in stream function, indicating that riparian buffers have thus far provided protection against major functional shifts seen in other systems. However, the changes we did observe were linked to watershed scale shifts in hydrology, water temperature, and light availability resulting from watershed deforestation. This has implications for the conservation of tens of thousands of stream kilometers across the expanding Amazon cropland region. 
    more » « less
  3. Abstract

    Urbanization can influence local richness (alpha diversity) and community composition (beta diversity) in numerous ways. For instance, reduced connectivity and land cover change may lead to the loss of native specialist taxa, decreasing alpha diversity. Alternatively, if urbanization facilitates nonnative species introductions and generalist taxa, alpha diversity may remain unchanged or increase, while beta diversity could decline due to the homogenization of community structure. Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand the consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated how landscape and local pond factors were correlated with the alpha diversity of aquatic plants, macroinvertebrates, and aquatic vertebrates. We also analyzed whether surrounding land use was associated with changes in community composition and the presence of specific taxa. We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites and a 15% decrease from rural to greenspace pond sites. Among landscape factors, adjacent developed land, mowed lawn cover, and greater distances to other waterbodies were negatively correlated with observed pond richness. Among pond level factors, habitat complexity was associated with increased richness, while nonnative fishes were associated with decreased richness. Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more nonnative species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. Our results suggest that integrating ponds into connected greenspaces, maintaining riparian vegetation, preventing nonnative fish introductions, and promoting habitat complexity may mitigate the negative effects of urbanization on aquatic richness. While ponds are small in size and rarely incorporated into urban conservation planning, the high beta diversity of distinct pond communities emphasizes their importance for supporting urban biodiversity.

     
    more » « less
  4. Summary

    Drought disturbances can have strong but variable effects on aquatic communities and little is understood about the impacts of drought, fragmentation and habitat reconnectivity on the dynamics of intermittent stream fish metacommunities.

    We performed two experiments using outdoor stream mesocosms to test the effects of drought‐mediated connectivity and habitat heterogeneity on realistic stream fish assemblages at local (pool/patch) and regional (stream unit) scales under non‐drought versus drought conditions (Exp1) and under drought conditions with ‘pulse’ flow connectivity versus ‘non‐pulse’ (Exp2).

    Survivorship,‐diversity and γ‐diversity differed little at the unit level between treatments and experiments, but significant interactions between treatments and pool position were observed for species richness and abundances at the pool‐level. Specifically, drought (Exp1) and non‐pulse (Exp2) treatments had consistently higher species richness and abundances in deeper downstream pools due to downstream‐biased immigration during the onset of drought and higher residency among fishes in downstream pools. Species‐specific responses in these treatments resulted in downstream pools that were characterised by species pre‐adapted to lentic conditions (e.g. sunfishes), whereas upstream pools were characterised by smaller‐bodied top‐water and pelagic species. Non‐drought (Exp1) and pulse (Exp2) treatments showed no difference in richness or abundances among pool positions and assemblages were generally well‐mixed, indicating that connectivity (even a brief pulse) of pool refugia was important for determining local and regional assemblage structure and mediating the impacts of drought.

    These experiments demonstrate that stream fish assemblages responded strongly to reduced flows and fragmentation, and that metacommunity dynamics were structured by differential emigration and immigration rates and directionality among heterogeneous and variably connected pool habitats.

     
    more » « less
  5. Abstract

    We investigated how the taxonomic and functional structures of fish assemblages in the lower Amazon River floodplain responded to seasonal hydrological variations. Fishes were sampled in 440 aquatic habitats across a floodplain area of 17,673 km2during periods of high, receding, low and rising water. In addition, we recorded local environmental and landscape variables known to affect fish assemblages in floodplains. Redundancy analysis indicated that the taxonomic and functional structures of the fish assemblages were associated with water levels as well as local environmental, landscape and spatial variables. Our results showed that piscivores, planktivores and omnivores, as well as species with periodic and intermediate life history strategies, dominated the floodplain fish assemblages during periods of high‐water levels, whereas herbivores, invertivores and detritivores, as well as species of large body size with an equilibrium life history strategy, dominated the fish assemblages during periods of low‐water levels. Hydrology strongly influenced the structure of the fish assemblages in the Amazon floodplains. Our results indicate that the maintenance of seasonal hydrological dynamics in the basin is essential for the conservation of the regional fish diversity.

     
    more » « less