Pelagic copepods often couple the classical and microbial food webs by feeding on microzooplankton (e.g. ciliates) in oligotrophic aquatic systems, and this consumption can trigger trophic cascades within the microbial food web. Consumption of mixotrophic microzooplankton, which are both autotrophic and heterotrophic within the same individual, is of particular interest because of its influence on carbon transfer efficiency within aquatic food webs. In Lake Baikal, Siberia, it is unknown how carbon from a well‐developed microbial food web present during summer stratification moves into higher trophic levels within the classical food web. We conducted in situ experiments in August 2015 to test the hypotheses that: (a) the lake's dominant endemic copepod ( Our results supported these hypotheses. Most ciliates consumed were a mixotrophic oligotrich and such taxa are often abundant in summer in other oligotrophic lakes. Consumption of these mixotrophs is likely to boost substantially the transfer efficiency of biomass to higher trophic levels with potential implications for fish production, but this has seldom been investigated in oligotrophic lakes. Feeding of
- PAR ID:
- 10079364
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Freshwater Biology
- Volume:
- 64
- Issue:
- 1
- ISSN:
- 0046-5070
- Page Range / eLocation ID:
- p. 138-151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract We used linear inverse ecosystem modeling techniques to assimilate data from extensive Lagrangian field experiments into a mass-balance constrained food web for the Gulf of Mexico open-ocean ecosystem. This region is highly oligotrophic, yet Atlantic bluefin tuna (ABT) travel long distances from feeding grounds in the North Atlantic to spawn there. Our results show extensive nutrient regeneration fueling primary productivity (mostly by cyanobacteria and other picophytoplankton) in the upper euphotic zone. The food web is dominated by the microbial loop (>70% of net primary productivity is respired by heterotrophic bacteria and protists that feed on them). By contrast, herbivorous food web pathways from phytoplankton to metazoan zooplankton process <10% of the net primary production in the mixed layer. Nevertheless, ABT larvae feed preferentially on podonid cladocerans and other suspension-feeding zooplankton, which in turn derive much of their nutrition from nano- and micro-phytoplankton (mixotrophic flagellates, and to a lesser extent, diatoms). This allows ABT larvae to maintain a comparatively low trophic level (~4.2 for preflexion and postflexion larvae), which increases trophic transfer from phytoplankton to larval fish.more » « less
-
null (Ed.)We investigated the response of an open-ocean plankton food web to a major ecosystem perturbation event, the Hawaiian lee cyclonic eddy Opal, using compound-specific isotopic analyses of amino acids (CSIA-AA) of individual zooplankton taxa. We hypothesized that the massive diatom bloom that characterized Opal would lead to a shorter food chain. Using CSIA-AA, we differentiated trophic position (TP) changes that arose from altered transfers through protistan microzooplankton, versus metazoan carnivory, and assessed the variability at the base of the food web. Contrary to expectation, zooplankton TPs were higher in the eddy than in ambient control waters (up to 0.8 trophic level), particularly for suspension feeders close to the food-web base. Most of the effect was due to increased trophic transfers through protistan consumers, indicating a general shift up, not down, of grazing and remineralization in the microbial food web. Eucalanus sp., which was 15-fold more abundant inside compared to outside of the eddy, was the only taxon observed to be a true herbivore (TP = 2.0), consistent with a high phenylalanine (Phe) δ 15 N value indicating feeding on nitrate-fueled diatoms in the lower euphotic zone. Oncaea sp., an aggregate-associated copepod, had the largest (1.5) TP difference, and lowest Phe δ 15 N, suggesting that detrital particles were local hot spots of enhanced microbial activity. Rapid growth rates and trophic flexibility of protistan microzooplankton apparently allow the microbial community to reorganize to bloom perturbations, as microzooplankton remain the primary phytoplankton grazers—despite the dominance of large diatoms—and are heavily preyed on by the mesozooplankton.more » « less
-
Abstract Eukaryotic microalgae play critical roles in the structure and function of marine food webs. The contribution of microalgae to food webs can be tracked using compound‐specific isotope analysis of amino acids (CSIA‐AA). Previous CSIA‐AA studies have defined eukaryotic microalgae as a single functional group in food web mixing models, despite their vast taxonomic and ecological diversity. Using controlled cultures, this work characterizes the amino acid
δ 13C (δ 13CAA) fingerprints—a multivariate metric of amino acid carbon isotope values—of four major groups of eukaryotic microalgae: diatoms, dinoflagellates, raphidophytes, and prasinophytes. We found excellent separation of essential amino acidδ 13C (δ 13CEAA) fingerprints among four microalgal groups (mean posterior probability reclassification of 99.2 ± 2.9%). We also quantified temperature effects, a primary driver of microalgal bulk carbon isotope variability, on the fidelity ofδ 13CAAfingerprints. A 10°C range in temperature conditions did not have significant impacts on variance inδ 13CAAvalues or the diagnostic microalgalδ 13CEAAfingerprints. Theseδ 13CEAAfingerprints were used to identify primary producers at the base of food webs supporting consumers in two contrasting systems: (1) penguins feeding in a diatom‐based food web and (2) mixotrophic corals receiving amino acids directly from autotrophic endosymbiotic dinoflagellates and indirectly from water column diatoms, prasinophytes, and cyanobacteria, likely via heterotrophic feeding on zooplankton. The increased taxonomic specificity of CSIA‐AA fingerprints developed here will greatly improve future efforts to reconstruct the contribution of diverse eukaryotic microalgae to the sources and cycling of organic matter in food web dynamics and biogeochemical cycling studies. -
Abstract Mixotrophs are ubiquitous and integral to microbial food webs, but their impacts on the dynamics and functioning of broader ecosystems are largely unresolved.
Here, we show that mixotrophy produces a unique type of food web module that exhibits unusual ecological dynamics, with surprising consequences for carbon flux under warming. We develop a generalizable model of a mixotrophic food web module that incorporates dynamic switching between phototrophy and phagotrophy to assess ecological dynamics and total system CO2flux.
We find that warming switches mixotrophic systems between alternative stable carbon states—including a phototrophy‐dominant carbon sink state, a phagotrophy‐dominant carbon source state and cycling between these two. Moreover, warming always shifts this mixotrophic system from a carbon sink state to a carbon source state, but a coordinated increase in nutrients can erase early warning signals of this transition and expand hysteresis.
This suggests that mixotrophs can generate critical carbon tipping points under warming that will be more abrupt and less reversible when combined with increased nutrient levels, having widespread implications for ecosystem functioning in the face of rapid global change.
Read the free
Plain Language Summary for this article on the Journal blog. -
Abstract In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly support
green food webs based on primary production andbrown food webs based on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs.
We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity.
Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs.