skip to main content


Title: Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization
Abstract

Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro–nanofibers with chitosan and ionically conductive (IC) polymers including, sulfonated polyaniline, and lignin sulfonate. These composite matrices were characterized for surface morphology, coating uniformity, ionic conductivity, and mechanical strength to explore as scaffold materials for nerve regeneration in conjunction with ES. Composite matrices measured conductivity in the range of 0.0049–0.0068 mS/m due to the uniform coating of sulfonated polymers on the micro–nanofibers. Thin films (2D) and composite fiber matrices (3D) of IC polymers seeded with human mesenchymal stem cells (hMSCs) were electrically stimulated at 0.5 V, 20 Hz for 1 h daily for 14 days to study the changes in cell viability, morphology, and expression of the neuronal‐like phenotype.In vitroES lead to changes in hMSCs' fibroblast morphology into elongated neurite‐like structures with cell bodies for ES‐treated and positive control growth factor‐treated groups. Immunofluorescent staining revealed the presence of neuronal markers including β3‐tubulin, microtubule‐associated protein 2, and nestin in response to ES. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1792–1805, 2019.

 
more » « less
NSF-PAR ID:
10079379
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part B: Applied Biomaterials
Volume:
107
Issue:
6
ISSN:
1552-4973
Page Range / eLocation ID:
p. 1792-1805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications. 
    more » « less
  2. Abstract

    Scaffold‐guided formation of neuronal‐like networks, especially under electrical stimulation, can be an appealing avenue toward functional restoration of injured nervous systems. Here, 3D conductive scaffolds are fabricated based on printed microfiber constructs using near‐field electrostatic printing (NFEP) and graphene oxide (GO) coating. Various microfiber patterns are obtained from poly(l‐lactic acid‐co‐caprolactone) (PLCL) using NFEP and complexity is achieved via modulating the fiber overlay angles (45°, 60°, 75°, 90°), fiber diameters (15 to 148 µm), and fiber spatial organization (spider web and tubular structure). Upon coating GO onto PLCL microfibers via a layer‐by‐layer (L‐b‐L) assembly technique and in situ reduction into reduced GO (rGO), the obtained conductive scaffolds, with 25–50 layers of rGO, demonstrate superior conductivity (≈0.95 S cm−1) and capability of inducing neuronal‐like network formation along the conductive microfibers under electrical stimulation (100–150 mV cm−1). Both electric field (0–150 mV cm−1) and microfiber diameter (17–150 µm) affect neurite outgrowth (PC‐12 cells and primary mouse hippocampal neurons) and the formation of orientated neuronal‐like networks. With further demonstration of such guidance to neuronal cells, these conductive scaffolds may see versatile applications in nerve regeneration and neural engineering.

     
    more » « less
  3. Abstract Background The ability to regenerate body parts is a feature of metazoan organisms and the focus of intense research aiming to understand its basis. A number of mechanisms involved in regeneration, such as proliferation and tissue remodeling, affect whole tissues; however, little is known on how distinctively different constituent cell types respond to the dynamics of regenerating tissues. Preliminary studies suggest that a number of organisms alter neuronal numbers to scale with changes in body size. In some species with the ability of whole-body axis regeneration, it has additionally been observed that regenerates are smaller than their pre-amputated parent, but maintain the correct morphological proportionality, suggesting that scaling of tissue and neuronal numbers also occurs. However, the cell dynamics and responses of neuronal subtypes during nervous system regeneration, scaling, and whole-body axis regeneration are not well understood in any system. The cnidarian sea anemone Nematostella vectensis is capable of whole-body axis regeneration, with a number of observations suggesting the ability to alter its size in response to changes in feeding. We took advantage of Nematostella ’s transparent and “simple” body plan and the NvLWamide-like mCherry fluorescent reporter transgenic line to probe the response of neuron populations to variations in body size in vivo in adult animals during body scaling and regeneration. Results We utilized the previously characterized NvLWamide-like::mCherry transgenic reporter line to determine the in vivo response of neuronal subtypes during growth, degrowth, and regeneration. Nematostella alters its size in response to caloric intake, and the nervous system responds by altering neuronal number to scale as the animal changes in size. Neuronal numbers in both the endodermal and ectodermal nerve nets decreased as animals shrunk, increased as they grew, and these changes were reversible. Whole-body axis regeneration resulted in regenerates that were smaller than their pre-amputated size, and the regenerated nerve nets were reduced in neuronal number. Different neuronal subtypes had distinct responses during regeneration, including consistent, not consistent, and conditional increases in number. Conditional responses were regulated, in part, by the size of the remnant fragment and the position of the amputation site. Regenerates and adults with reduced nerve nets displayed normal behaviors, indicating that the nerve net retains functionality as it scales. Conclusion These data suggest that the Nematostella nerve net is dynamic, capable of scaling with changes in body size, and that neuronal subtypes display differential regenerative responses, which we propose may be linked to the scale state of the regenerating animals. 
    more » « less
  4. Abstract

    Electrical stimulation (ES) within a conductive scaffold is potentially beneficial in encouraging the differentiation of stem cells toward a neuronal phenotype. To improve stem cell‐based regenerative therapies, it is essential to use electroconductive scaffolds with appropriate stiffnesses to regulate the amount and location of ES delivery. Herein, biodegradable electroconductive substrates with different stiffnesses are fabricated from chitosan‐grafted‐polyaniline (CS‐g‐PANI) copolymers. Human mesenchymal stem cells (hMSCs) cultured on soft conductive scaffolds show a morphological change with significant filopodial elongation after electrically stimulated culture along with upregulation of neuronal markers and downregulation of glial markers. Compared to stiff conductive scaffolds and non‐conductive CS scaffolds, soft conductive CS‐g‐PANI scaffolds promote increased expression of microtubule‐associated protein 2 (MAP2) and neurofilament heavy chain (NF‐H) after application of ES. At the same time, there is a decrease in the expression of the glial markers glial fibrillary acidic protein (GFAP) and vimentin after ES. Furthermore, the elevation of intracellular calcium [Ca2+] during spontaneous, cell‐generated Ca2+transients further suggests that electric field stimulation of hMSCs cultured on conductive substrates can promote a neural‐like phenotype. The findings suggest that the combination of the soft conductive CS‐g‐PANI substrate and ES is a promising new tool for enhancing neuronal tissue engineering outcomes.

     
    more » « less
  5. Abstract Background

    Mesenchymal stem cells (MSCs) secrete a diversity of factors with broad therapeutic potential, yet current culture methods limit potency outcomes. In this study, we used topographical cues on polystyrene films to investigate their impact on the secretory profile and potency of bone marrow-derived MSCs (hBM-MSCs). hBM-MSCs from four donors were cultured on topographic substrates depicting defined roughness, curvature, grooves and various levels of wettability.

    Methods

    The topographical PS-based array was developed using razor printing, polishing and plasma treatment methods. hBM-MSCs from four donors were purchased from RoosterBio and used in co-culture with peripheral blood mononuclear cells (PBMCs) from Cell Applications Inc. in an immunopotency assay to measure immunosuppressive capacity. Cells were cultured on low serum (2%) for 24–48 h prior to analysis. Image-based analysis was used for cell quantification and morphology assessment. Metabolic activity of BM-hMSCs was measured as the mitochondrial oxygen consumption rate using an extracellular flux analyzer. Conditioned media samples of BM-hMSCs were used to quantify secreted factors, and the data were analyzed using R statistics. Enriched bioprocesses were identify using the Gene Ontology toolenrichGOfrom theclusterprofiler.One-way and two-way ANOVAs were carried out to identify significant changes between the conditions. Results were deemed statistically significant for combinedP < 0.05 for at least three independent experiments.

    Results

    Cell viability was not significantly affected in the topographical substrates, and cell elongation was enhanced at least twofold in microgrooves and surfaces with a low contact angle. Increased cell elongation correlated with a metabolic shift from oxidative phosphorylation to a glycolytic state which is indicative of a high-energy state. Differential protein expression and gene ontology analyses identified bioprocesses enriched across donors associated with immune modulation and tissue regeneration. The growth of peripheral blood mononuclear cells (PBMCs) was suppressed in hBM-MSCs co-cultures, confirming enhanced immunosuppressive potency. YAP/TAZ levels were found to be reduced on these topographies confirming a mechanosensing effect on cells and suggesting a potential role in the immunomodulatory function of hMSCs.

    Conclusions

    This work demonstrates the potential of topographical cues as a culture strategy to improve the secretory capacity and enrich for an immunomodulatory phenotype in hBM-MSCs.

     
    more » « less